
Trends in Server Platform Security
Platform Security Summit 2019

Rob Wood

Who am I
Currently:

NCC Group - VP of Hardware and Embedded Security Services

Previously:

Motorola Mobility - Security Architect

BlackBerry - Security Research Group

Research in Motion - OS/FW Security Dev

Always:

Fights for the user

Remote
attacks

Internet
(bad dudes)

Platform Security
Threat model: where is your attack surface?

$1

Ethernet

Remote
attacks

Internet
(bad dudes)

Local
attacks

Platform Security
Threat model: where is your attack surface?

Ethernet

USB

$1
$10

Privilege
escalation

Remote
attacksLocal

attacksCircuit
attacks

Internet
(bad dudes)

Platform Security
Threat model: where is your attack surface?

USB
HDMI
JTAG
UART

NFC

SPI
I2C

MIPI
PCIe
LPC

SMBus
eMMC
SDIO

BLE
WiFi

Ethernet

$1
$10

$100

It gets deeper depending on
the threat actor!

Remote
attacks

Internet
(bad dudes)

Local
attacksCircuit

attacks

Platform Security
Threat model: where is your attack surface?

BLE
WiFi

Ethernet
Non-invasive

silicon attacks

Fault
Injection

DPA Side
Channel

Invasive
silicon attacks

$1
$10

FIB
SEM

$100
$1000

$10000

USB
HDMI
JTAG
UART

NFC

SPI
I2C

MIPI
PCIe
LPC

SMBus
eMMC
SDIO

Why do we care?
● Third party data centres, with unknown security controls

○ Edge network and CDN deployments
○ Cloud providers

■ Need to avoid/prevent malware persistence
■ Hypervisor escape may give access to firmware
■ Bare-metal cloud gives access to firmware

● Supply chain attacks
○ “bloomberg/supermicro” *

https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2018/october/much-ado-about-hardware-implants/

Hardware Security Ecosystem
● Privilege escalation in SW through HW modification and abuse
● Data extraction
● cost: higher barrier-to-entry for attackers due to equipment costs
● maturity: HW security ~15 years behind the state of SW security, with very few exceptions

Smart
Card,

TPM, SE

Smartphone

HSMs

Internet of Things, COTS Servers,
Automotive, everything else

Increasing
Hardware

Security

of OEMs

.

.

.

$10000
silicon
attack

$10
circuit
attack

Decreasing
numbers of
attackers

$0
network
attack

Server Architecture

Management
Network

Network

Server

Server Architecture

BMC

CPU #n

CPU #1

User

Kernel

Hypervisor

User

Kernel

SMM

BIOS/UEFI

...

...

PCH

System
RAM

Storage device

eMMC

TPM SPI

Other PeripheralsOther PeripheralsOther Peripherals
(PSU, Fans, etc)

USB-PD

Debug

NIC

Network

Management
Network

Server

Server Architecture

BMC

CPU #n

CPU #1

User

Kernel

Hypervisor

User

Kernel

SMM

BIOS/UEFI

...

...

PCH

System
RAM

Storage device

eMMC

TPM SPI

Other PeripheralsOther PeripheralsOther Peripherals
(PSU, Fans, etc)

USB-PD

Management
Network

NIC

Network

Debug

Server

Server Architecture

BMC

CPU #n

CPU #1

User

Kernel

Hypervisor

User

Kernel

SMM

BIOS/UEFI

...

...

PCH

System
RAM

Storage device

FW

eMMC

FW

TPM SPI

PMU ME

Other PeripheralsOther PeripheralsOther Peripherals

FW

USB-PD

FW

Option
ROMs

NIC

FW

Network

FW

Management
Network

Debug

FW

FW

Server

BMC

CPU #n

CPU #1

User

Kernel

Hypervisor

User

Kernel

SMM

BIOS/UEFI

...

...

PCH

System
RAM

Storage device

FW

eMMC

FW

TPM SPI

PMU ME

Other PeripheralsOther PeripheralsOther Peripherals

FW

USB-PD

FW

Option
ROMs

NIC

FW

FW

Debug

FW

FW

Server Architecture

Network

Management
Network

Server

BMC

CPU #n

CPU #1

User

Kernel

Hypervisor

User

Kernel

SMM

BIOS/UEFI

...

...

PCH

System
RAM

Storage device

FW

eMMC

FW

TPM SPI

PMU ME

Other PeripheralsOther PeripheralsOther Peripherals

FW

USB-PD

FW

Option
ROMs

NIC

FW

FW

Debug

FW

FW

Server Architecture

Network

Management
Network

“PCs are just several embedded
devices in a trenchcoat“
- @whitequark

Attack Surface
Complexity of Attack Surface

Increasing
Privileges

BIOS/UEFI

User applications

Kernel

Hypervisor

System Management Mode

Bootloader
TCB

Attack Surface
Complexity of Attack Surface

Increasing
Privileges

BIOS/UEFI

User applications

Kernel

Hypervisor

System Management Mode

Bootloader

Firmware
(CSME/PSP/BMC/PMC/etc)

Trusted
Computing

Base

BIOS/UEFI

Attack Surface

User applications

Kernel

Complexity of Attack Surface

Hypervisor

System Management Mode

Bootloader

Firmware
(CSME/PSP/BMC/PMC/etc)

Increasing
Privileges

● Decades of software security
improvements, only at upper layers

● Lowest layers written by HW
developers, not SW developers

● Complex software stacks
○ often multiple full Linux

operating systems!
● Difficulty patching
● 10 year lead time (already old!)
● Documentation is almost non-existent Trusted

Computing
Base

Platform Ecosystem Complexity
● Chip vendors and BSP
● Board OEMs
● Outsource manufacturing

○ Normal stuff, plus “Bloomberg accusations”
○ Interdiction attacks (tamper proof shipping)

● Independent BIOS Vendors (IBVs)
● TPM and PKI providers

○ TPM’s EK is provisioned by TPM vendors

● Hypervisor and OS providers

Common Platform Issues

● RAM physical side channels
● CPU microarchitectural issues

Silicon Issues

Importance of Errata

JTAG
● What is JTAG

○ Manufacturing test
○ Development debug (SWD only does this)

● What devices have it
○ Processors, complex SoCs, FPGAs, etc. (not memory)

● What does it give you:

Test
Access

Port

Memory access
port

Non Invasive
debug

Boundary
Scan

Debug
Access Port

DFT

Invasive Debug

ETM

Performance
monitors

JTAG - Mitigations
● Fuses (great, but usually not sufficient)
● Physical removal
● Authentication:

○ Some processors can support this :)
○ Those that do often have hard-coded keys :(

Test
Access

Port

Memory access
port

Non Invasive
debug

Boundary
Scan

Debug
Access Port

DFT

Invasive Debug

ETM

Performance
monitors

Circuit Issues
● Physical overrides switches/jumpers
● Unauthenticated debug (JTAG, UART)
● Ineffective anti-tamper mechanisms
● Unprotected bus traffic

Firmware Issues
● Configuration issues

○ Mostly a deployment issue, but some OEM issues
■ SoC integration and provisioning
■ RoT key and firmware signing

○ Unprotected configuration is the most common issues we see
○ IOMMU still not configured for most systems
○ Chipsec is awesome! but...

■ Doesn’t support AMD or ARM (yet?)
■ Not everyone actually uses it (or it wouldn’t find me as many issues)

Firmware Issues
● Configuration issues

● Programmatic bypasses
○ Manufacturing test
○ Recovery features
○ Upgrade functionality

Mostly completely unauthenticated!

Sometimes accessible from the network.

Firmware Issues
● Configuration issues
● Programmatic bypasses

● Input validation
○ Unchecked lengths
○ Stored addresses/offsets
○ Type confusion (especially between image types, or device families)
○ Not checking the data at the earliest opportunity
○ A general lack of attack surface enumeration (what is an “input”?)

■ Reads from flash memory or DRAM
■ Reads from shared mailbox registers
■ Hardware peripherals
■ Other cores running firmware
■ Other privilege levels on the same core
■ External code written by the same developer

Server

BMC

CPU #n

CPU #1

User

Kernel

Hypervisor

User

Kernel

SMM

BIOS/UEFI

...

...

PCH

System
RAM

Storage device

FW

eMMC

FW

TPM SPI

PMU ME

Other PeripheralsOther PeripheralsOther Peripherals

FW

USB-PD

FW

Option
ROMs

NIC

FW

FW

Debug

FW

FW

Server architecture

Network

Management
Network

BMC

CPU #n

CPU #1

User

Kernel

Hypervisor

User

Kernel

SMM

BIOS/UEFI

...

...

PCH

System
RAM

Storage device

FW

eMMC

FW

TPM SPI

PMU ME

Other PeripheralsOther PeripheralsOther Peripherals

FW

USB-PD

FW

Option
ROMs

NIC

FW

FW

Debug

FW

FW

Server architecture

Network

Management
Network

Firmware Issues
● Configuration issues
● Programmatic bypasses
● Input validation

● Memory unsafety
○ Reality check: Most firmware is written in C
○ memcpy(dst,src,len)

■ Also DMA copies
■ Also coprocessor/GPU/etc copies
■ Memory aliasing

○ Use-after-free, double-free (but heaps are less common in bare-metal FW)

Firmware Issues
● Configuration issues
● Programmatic bypasses
● Input validation
● Memory unsafety

● Race conditions
○ Multi-threaded firmware
○ Multi-core resource accesses
○ Remember:

■ The faster, lower privileged x86 always wins the race!
■ Probabilistic attacks are valid attacks

Race Conditions
● a.k.a Time-of-Check-Time-of-Use (TOCTOU)
● a.k.a Double-Read or Double-Fetch

Example:

1. Read image from flash to validate data
2. Read a second time to consume the data

● eXecute-In-Place (XIP) memories
● Demand-paging applications
● Poor threat modeling:

○ Attack surface diagram not drawn with enough granularity
○ The flash bus is not secure!

Race Conditions
Exploitation:

● Interposer between host and memory
● Selectively replace transactions with

malicious ones as needed

Host

Mitigations:

● Page data into RAM
just once!

● Validate data on
each read

$18 FPGA

Firmware Issues
● Configuration issues
● Programmatic bypasses
● Input validation
● Memory unsafety
● Race conditions

● Confused deputy
○ Firmware treats all x86 privilege levels the same
○ Cannot distinguish between legitimate and rogue requests
○ Allows user mode to attack kernel/hypervisor/SMM
○ Example:

■ Coprocessor only distinguishes the core originating a transaction, not the
privilege level within that core (PCID/ASID/VMID/etc)

Firmware Issues
● Configuration issues
● Programmatic bypasses
● Input validation
● Memory unsafety
● Race conditions
● Confused deputy

● Secure Boot implementation issues
○ Incomplete or missing chain of trust
○ TOCTOU
○ Partial signing
○ Fail open
○ LinkAddr!=LoadAddr
○ No roll-back prevention

Secure Boot

Boot
ROM

Boot
loader

FW
loader

➔ Configure external memories
➔ Load and verify boot loader

➔ Configure hardware security permissions
➔ Load and verify FW loader

➔ Configure more hardware peripherals
➔ Load and verify FW
➔ Take other cores out of reset

➔ Do “FW things”
➔ Load and verify applications?FW

Secure Boot

Boot
ROM

Boot
loader

FW
loader

➔ Configure external memories
➔ Load and verify boot loader

➔ Configure hardware security permissions
➔ Load and verify FW loader

➔ Configure more hardware peripherals
➔ Load and verify FW
➔ Take other cores out of reset

➔ Do “FW things”
➔ Load and verify applications?FW

Immutable*

Trust Anchors
● “A public key and the code that uses it”

○ Multiple keys for different purposes/users
● Something internal to the CPU

○ ROM
○ Fuses
○ Internal flash (with careful access controls)

● Not an external component (TPM/SE/EEPROM)
● Not a writable component (eg. Cisco’s

FPGA/”Thrangrycat”)

Secure Boot - LinkAddr

Download bufferRAM

0xFFFFFFFF

0x00000000

● Signature is valid
● Code is statically linked, with fixed address

Secure Boot - LinkAddr

Image

S
ig

na
tu

re

RAM

0xFFFFFFFF

0x00000000

● Signature is valid
● Code is statically linked, with fixed address

● Signature is valid
● Code is statically linked, with fixed address
● Attacker controlled LoadAddr

Secure Boot - LinkAddr

Image

S
ig

na
tu

re

RAM

0xFFFFFFFF

0x00000000

● Signature is valid
● Code is statically linked, with fixed address
● Attacker controlled LoadAddr

● Signature is valid
● Code is statically linked, with fixed address
● Attacker controlled LoadAddr
● Exploitation:

○ Image is loaded at the wrong address
○ First non-relative branch instruction -> code goes off the rails

Secure Boot - LinkAddr

Image

S
ig

na
tu

re

RAM

0xFFFFFFFF

0x00000000

● Signature is valid
● Code is statically linked, with fixed address
● Attacker controlled LoadAddr
● Exploitation:

○ Image is loaded at the wrong address
○ First non-relative branch instruction -> code goes off the rails

● Signature is valid
● Code is statically linked, with fixed address
● Attacker controlled LoadAddr
● Exploitation:

○ Image is loaded at the wrong address
○ First non-relative branch instruction -> code goes off the rails

■ If attacker can preload a payload to the branch destination

Secure Boot - LinkAddr

Image

S
ig

na
tu

re

PayloadRAM

0xFFFFFFFF

0x00000000

Supply Chain

Supply Chain
As a concept, this is a loaded term:

1. Global logistics: Moving “stuff” from one place to another
2. Factories: Mostly network and endpoint security
3. Software supply chain: 3rd party software dependencies
4. Product supply chain:

○ Some overlap with #2 and #3
○ Ensure products can be built in untrusted factories.
○ See here and here for some public reading.

https://www.nccgroup.trust/uk/our-research/secure-device-manufacturing-supply-chain-security-resilience/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2018/october/much-ado-about-hardware-implants/

Supply Chain - Examples
1. Bloomberg/Supermicro

https://www.ftsafe.com/replacement/

Supply Chain - Examples
1. Bloomberg/Supermicro
2. Google/Feitian BLE security tokens

https://www.ftsafe.com/replacement/
https://security.googleblog.com/2019/05/titan-keys-update.html
https://www.ftsafe.com/replacement/

Supply Chain - Examples
1. Bloomberg/Supermicro
2. Google/Feitian BLE security tokens
3. Furious Box

https://www.ftsafe.com/replacement/
https://security.googleblog.com/2019/05/titan-keys-update.html
https://www.ftsafe.com/replacement/

Supply Chain - Detection

● Number of devices: ordered != built != shipped != activated
○ The data needed is not likely in a single system
○ Tracking scrap at each stage can be a problem
○ A few stations vastly overproducing

● Factory network hardening
○ 3rd party factory
○ Station to station traffic
○ TCP packet TTL too high

● Credentials used from wrong site
● Activity during quiet times: local holidays and timezones
● Obsolete devices being newly produced, or produced at the wrong

factory

whitepaper

Supply Chain - Ownership
● Here we specifically mean control: “cryptographic ownership”

○ Who signs the firmware?
○ Which firmware? (boot/recovery/debug/etc)
○ Hardware will always need to be trusted at some level (eg. x86

microcode)

● How to provision ownership
○ Early during silicon fabrication/wafer test
○ At OEM during provisioning/onboarding/enrollment/birthing
○ Both is best

● How to transfer ownership
○ Re-sign firmware (signing without audit?!)
○ Does hardware even support changes to the validation keys?
○ Can an attacker install their own keys?

Final Thoughts
● Start with better threat modeling:

○ Understand your FULL attack surface
○ Understand the superset of use cases

● Start with better security requirements:
○ NIST SP 800-193: Platform Firmware Resiliency
○ Open Compute Project

● Implement better roots of trust
○ Each chip needs its own!

● Push these costs upstream
○ Embed security requirements and remediation in contracts
○ Revisit current contracts with vendors if possible

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://www.opencompute.org/wiki/Security

Fin

Questions:

rob.wood@nccgroup.com

@finderoffail

