Growing Risks in the Software Supply Chain

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Mark Sherman, Ph.D. Technical Director, CERT

Platform Security Summit 2019 Oct 3, 2019

Software Engineering Institute

Carnegie Mellon University

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon[®] and CERT[®] are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. DM19-0965

Software Engineering Institute | Carnegie Mellon University

The SEI is a DoD R&D Federally Funded **Research and Development Center**

Established in 1984 at Carnegie Mellon University

 \sim 700 employees (ft + pt), of whom about 70% are engaged in technical work

Initiated CERT cybersecurity program in 1988

Offices in Pittsburgh and DC, with several locations near customer facilities

~\$145M in annual funding

Software Engineering Institute

Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited 3 distribution.

Cybersecurity is a lifecycle issue

Software Engineering Institute | Ca

Carnegie Mellon University

Cross lifecycle issues

Software Engineering Institute Carnegie I

Carnegie Mellon University

Cross lifecycle issues

Procurement / Acquisition (Supply chain)

Soft

Carnegie Mellon University

Conventional view of supply chain risk

Original Part

Counterfeit Part

Sources: http://www.nytix.com/NewYorkCity/articles/handbags.html; http://www.laserwisetech.co.nz/secret.php; http://www.muscatdaily.com/Archive/Oman/Fake-car-parts-contribute-to-rise-in-road-accidents-Experts; http://www.andovercg.com/services/cisco-counterfeit-wic-1dsu-t1.shtml; http://unites-systems.com/l.php?id=191

Software Engineering Institute Carnegie

Carnegie Mellon University

Supply chains maintain product properties

Cold Chain

A cold chain is a temperaturecontrolled supply chain. An unbroken cold chain is an uninterrupted series of storage and distribution activities which maintain a given temperature range.

Source: Wikipedia, https://en.wikipedia.org/wiki/Cold chain

Software Engineering Institute

Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited 8 distribution.

Value chains add value at each step

Value chain

The idea of the value chain is based on the process view ... seeing a manufacturing (or service) organization ... made up of subsystems each with inputs, transformation processes and outputs.

Source: https://en.wikipedia.org/wiki/Value_chain

Software Engineering Institute

Carnegie Mellon University

Evolution of software development

Custom development – context:

- Software was limited
 - Size
 - Function
 - Audience
- Each organization employed developers
- Each organization created
 their own software

Shared development – ISVs (COTS) – context:

- Function largely understood
 - Automating existing processes
- Grown beyond ability for using organization to develop economically
- Outside of core competitiveness by acquirers

Supply chain: practically none

Supply chain: software supplier

Carnegie Mellon University

•

Development is now assembly

Collective development – context:

- Too large for single organization
- Too much specialization
- Too little value in individual components

Supply chain: long

Note: hypothetical application composition

Software Engineering Institute | Ca

Carnegie Mellon University

Software supply (value) chain (tree) for assembled software

Expanding the scope and complexity of acquisition and deployment Visibility and direct controls are limited (only in shaded area)

Source: "Scope of Supplier Expansion and Foreign Involvement" graphic in DACS

www.softwaretechnews.com Secure Software Engineering, July 2005 article "Software Development Security: A Risk Management Perspective" synopsis of May 2004 GAO-04-678 report "Defense Acquisition: Knowledge of Software Suppliers Needed to Manage Risks"

Software Engineering Institute

Carnegie Mellon University

Supply chain breadth: Assembly – Apache Example

"First level dependencies of the Apache web server"

		rob@kali: ~		0	Θ	0
File Edit View Search Te	rminal Help					
rob@kali:~\$ apt-cache de	ependsrecurseno	-recommendsno-suggest	sno-conflicts	no-b	reak	s ^
no-replacesno-enham	ncesno-pre-depends	apache2 grep "^\w"	sort -u column			
apache2	libdb5.3	libldap-common	libslang2			
apache2-bin	libdebian-installer4	libltdl7	libsqlite3-0			
apache2-data	libexpat1	liblua5.2-0	libssh2-1			
apache2-utils	libffi6	liblzma5	libssl1.1			
cdebconf	libgcc1	libmariadbclient18	libstdc++6			
debconf	libgcrypt20	libncurses6	libsystemd0			
dpkg	libgdbm6	libncursesw6	libtasn1-6			
gcc-8-base	libgdbm-compat4	libnettle6	libtextwrap1			
init-system-helpers	libgmp10	libnewt0.52	libtinfo6			
libapr1	libgnutls30	libnghttp2-14	libunistring2			
libaprutil1	libgpg-error0	libodbc1	libuuid1			
libaprutil1-dbd-mysql	libgssapi-krb5-2	libp11-kit0	libxml2			
libaprutil1-dbd-odbc	libhogweed4	libpcre3	lsb-base			
libaprutil1-dbd-pgsql	libicu63	libperl5.28	mime-support			
libaprutil1-dbd-sqlite3	libidn2-0	libpq5	mysql-common			
libaprutil1-ldap	libjansson4	libprocps7	perl			
libbrotli1	libk5crypto3	libpsl5	perl-base			
libbz2-1.0	libkeyutils1	librtmp1	perl-modules-5.	28		
libc6	libkrb5-3	libsasl2-2	procps			
libcom-err2	libkrb5support0	libsasl2-modules-db	tar			
libcurl4	libldap-2.4-2	libselinux1	zliblg			
rob@kali:-\$						

From: Rob Graham, Software Bill of Materials (SBoM) - Does It Work for DevSecOps?, Jan 14, 2019, https://www.alienvault.com/blogs/security-essentials/software-bill-of-materials-sbom-does-it-work-for-devsecops

Software Engineering Institute

Carnegie Mellon University

Supply chain depth: supply chain has a long path

Software Engineering Institute

Carnegie Mellon University

Large number of components in assembled software

Sontaype:

- 85% of modern applications are assembled from open source components; can be as high as 97% for web applications
- Average has 460 components; some applications had 2,000-4,000 OSS

Gonzalez, et al:

Applications contain over 80% of common code; Unique code only represents 5% of all code

Sources: Sonatype, "2019 State of the Software Supplu Chain", https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON SSSC-Report-2019 jun16-DRAFT.pdf; H. Gonzalez, N. Stakhanova, A. Ghorbani, "Measuring code reused in Android apps," 2016 14th Annual Conference on Privacy, Security and Trust (PST), Dec 12-14, 2016, https://ieeexplore.ieee.org/document/7906925

Software Engineering Institute

Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited 15 distribution.

Cloning represents additional, hidden components in the supply chain

Source: B. Baker, "On Finding Duplication and Near-Duplication in Large Software Systems," <u>Proceedings of 2nd Working Conference on Reverse Engineering</u>, Jul 14-16, 1995, <u>https://ieeexplore.ieee.org/abstract/document/514697</u>;

L. Jiang, G. Misherghi, Z.Su, S. Glondu, "DECKARD: Scalable and Accurate Tree-based Detection of Code Clones," <u>29th International Conference on Software Engineering (ICSE'07)</u>, May 20-26, 2007, <u>https://web.cs.ucdavis.edu/~su/publications/icse07.pdf</u>

Z. Li, S. Lu, S. Myagmar, Y. Zhou, "CP-Miner: Finding Copy-Paste and Related Bugs in Large-Scale Software Code," IEEE Transactions on Software Engineering, Vol 32, No. 3, Mar 2006, <u>https://people.cs.uchicago.edu/~shanlu/paper/TSE-CPMiner.pdf</u>

c. Kapser, "Toward an Understanding of Software Code Cloning as a Development Practice," PhD Thesis, U. Waterloo, 2009,

https://pdfs.semanticscholar.org/bdae/5ede2999eae51645b5c91004706485a53af0.pdf

Cloning: cutting and pasting code – "microcomponents"

- Typically10–15% of the source code in large software systems is part of one or more code clones [Kapser]
- 19% of X Windows System [Baker]
- 20% of other large programs (>1M LOC) [Baker]

Throughout Linux

- 22.7% of Linux kernel [Jang]
- 190,000 copy-pasted segments in Linux [Li]
- 150,000 copy-pasted segments in FreeBSD. [Li]
- 29% of JDK [Jangh]

Software Engineering Institute Carnegi

Carnegie Mellon University

Open source is not secure

Heartbleed and Shellshock were found by exploitation

Other open source software illustrates vulnerabilities from cursory inspection

Grep-and-Gripe: Revenge of the Symlinks

grep -A5 -B5 /tmp/ \$PROGRAM

- Dmitry E. Oboukhov, August 2008
- Run against Debian packages
- This kind of thing really hurts pie charts of different vulnerability types

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck, <u>https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf;</u> Sonatype, Sonatype Open Source Development and Application Security Survey; Sonatype, "2019 State of the Software Supplu Chain", https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON SSSC-Report-2019 jun16-DRAFT.pdf

Software Engineering Institute Carn

Carnegie Mellon University

Open source is not secure

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck, <u>https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf;</u> Sonatype, Sonatype Open Source Development and Application Security Survey; Sonatype, "2019 State of the Software Supplu Chain", https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON SSSC-Report-2019 jun16-DRAFT.pdf

s and a second s

Software Engineering Institute | Carnegie Mellon University

Corruption in the tool chain already exists

Sources: http://www.macrumors.com/2015/09/24/xcodeghost-top-25-apps-apple-list/ http://www.itntoday.com/2015/09/the-85-ios-apps-affected-by-xcodeghost.html

- XcodeGhost corrupted Apple's development environment
- Major programs affected
 - WeChat
 - Badu Music
 - Angry Birds 2
 - Heroes of Order & Chaos
 - iOBD2
- Not alone
 - Expensive Wall (2017)
 - HackTask (2017)

Software Engineering Institute

Carnegie Mellon University

Al and Data Make Supply Chain Issues Worse

Newer, advanced software depends on these additional "supplies"

Relatively less is known about the security of these "supplies"

 Pandas Numpy Scikit-learn Matplotlib TensorFlow Keras Seaborn Pytorch & Torch Kaggle <li< th=""><th>Machine Learning Frameworks</th><th colspan="10">Data Sources</th></li<>	Machine Learning Frameworks	Data Sources									
	 Pandas Numpy Scikit-learn Matplotlib TensorFlow Keras Seaborn Pytorch & Torch 	 Kaggle UCI Machine Learning Repository Find Datasets Data.gov xView ImageNet Google's Open Images 									

Carnegie Mellon University

Machine learning system face training data supply challenges

Rich supplies of "deep fakes" are readily accessible

Source: https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html

Software Engineering Institute Carne

Carnegie Mellon University

Poor detection of deep fakes

FaceForensics Benchmark

Benchmarks - Data and Documentation About Submit

FaceForensics Benchmark

This table lists the benchmark results for the Binary Classification scenario.

Method	Info	Deepfakes v	Face2Face	Face Swap	NeuralTextures	Pristine	Total
Xception	P	0.964	0.869	0.903	0.807	0.524	0.710
Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, Matthia	s Nießner: FaceForensics++: Learning	to Detect Manipulate	ed Facial Images. IC	CV 2019			
MesoNet		0.873	0.562	0.612	0.407	0.726	0.660
Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isao Echizen: Mesonet: a compact fi	acial video forgery detection network. a	rXiv					
XceptionNet Full Image	P	0.745	0.759	0.709	0.733	0.510	0.624
Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies, Matthia	s Nießner: FaceForensics++: Learning	to Detect Manipulat	ed Facial Images. IC	CV 2019			
Bayar and Stamm		0.845	0.737	0.825	0.707	0.462	0.616
Belhassen Bayar and Matthew C. Stamm: A deep learning approach to universal image ma	nipulation detection using a new convo	lutional layer. ACM	Vorkshop on Informa	tion Hiding and Mu	timedia Security		
Rahmouni		0.855	0.642	0.563	0.607	0.500	0.581
Nicolas Rahmouni, Vincent Nozick, Junichi Yamagishi, and Isao Echizen: Distinguishing oo Security.	mputer graphics from natural images us	sing convolution neu	ral networks. IEEE W	Vorkshop on Inform	ation Forensics and		
Recasting		0.855	0.679	0.738	0.780	0.344	0.552
Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva: Recasting residual-based local des and Multimedia Security	criptors as convolutional neural networ	ks: an application to	image forgery detec	tion. ACM Worksho	p on Information Hiding		
Steganalysis Features		0.736	0.737	0.689	0.633	0.340	0.518

Jessica Fridrich and Jan Kodovsky: Rich Models for Steganalysis of Digital Images. IEEE Transactions on Information Forensics and Security

Cannot reliable verify that training data obtained through a supply chain

Preconfigured machine learning systems provide a vehicle to distribute bad training data

Source:

http://kaldir.vc.in.tum.de/faceforensics _benchmark/index.php (as of 9/25/19)

Software Engineering Institute | (

Carnegie Mellon University

Reducing software supply chain risk factors

Software Engineering Institute | Carnegi

Carnegie Mellon University

Supplier capability: security commitment evidence

GO	VERNA	NCE	INT	ELLIGE	NCE	SSDL						
ACTIVITY	BSIMM10 FIRMS (out of 122)	EXAMPLE FIRM	ACTIVITY	BSIMM10 FIRMS (out of 122)	EXAMPLE FIRM	ACTIVITY	BSIMM10 FIRMS (out of 122)	EXAMPLE FIRM	ACTIVITY	BSIMM10 FIRMS (out of 122)	EXAMPLE FIRM	
STRA	TEGY & M	ETRICS	AT	TACK MOD	ELS	ARCHI	TECTURE A	NALYSIS	PENE	TRATION TE	STING	
[SM1.1]	81	1	[AM1.2]	80		[AA1.1]	103	1	[PT1.1]	109	1	
[SM1.2]	66		[AM1.3]	36		[AA1.2]	29	1	[PT1.2]	94	1	
[SM1.3]	73	1	[AM1.5]	51	1	[AA1.3]	23	1	[PT1.3]	82		
[SM1.4]	107	1	[AM2.1]	8		[AA1.4]	62		[PT2.2]	25	1	
[SM2.1]	49		[AM2.2]	7	1	[AA2.1]	18		[PT2.3]	22		
[SM2.2]	53		[AM2.5]	16	1	[AA2.2]	14	1	[PT3.1]	11	1	
[SM2.3]	52		[AM2.6]	11	1	[AA3.1]	7		[PT3.2]	5		
[SM2.6]	51		[AM2.7]	10		[AA3.2]	1					
[SM3.1]	21		[AM3.1]	3		[AA3.3]	4					
[SM3.2]	6		[AM3.2]	2								
[SM3.3]	14		[AM3.3]	0								
[SM3.4]	0											
COMF	PLIANCE &	POLICY	SECURITY	FEATURES	& DESIGN		CODE REVIE	W	SOFTW/	ARE ENVIRO	DNMENT	
[CP1.1]	81	1	[SFD1.1]	98		[CR1.2]	80	1	[SE1.1]	66		
[CP1.2]	105	1	[SFD1.2]	69	1	[CR1.4]	85	1	[SE1.2]	111	1	
[CP1.3]	76	1	[SFD2.1]	31		[CR1.5]	.R1.5] 44		[SE2.2]	36	1	
[CP2.1]	48		[SFD2.2]	40		[CR1.6]	44	1	[SE2.4]	27		
[CP2.2]	47		[SFD3.1]	11		[CR2.5]	39		[SE3.2]	13		
[CP2.3]	51		[SFD3.2]	D3.2] 12		[CR2.6]	21		[SE3.3]	4		
[CP2.4]	44		[SFD3.3]	4		[CR2.7]	23		[SE3.4]	14		
[CP2.5]	56	1				[CR3.2]	7	1	[SE3.5]	5		
[CP3.1]	25					[CR3.3]	1		[SE3.6]	3		
[CP3.2]	15					[CR3.4]	4		[SE3.7]	9		
[CP3.3]	7					[CR3.5]	2					
	TRAININ		STANDARDS & REQUIREMENTS			SEC	CURITY TEST	TING	CONFIG.	AGMT. & VU	LN. MGMT.	
[T1.1]	77	1	[SR1.1]	83	1	[ST1.1]	100	1	[CMVM1.1]	103	1	
[T1.5]	37		[SR1.2]	81		[ST1.3]	87	1	[CMVM1.2]	101		
[T1.7]	46	1	[SR1.3]	85	1	[ST2.1]	32	1	[CMVM2.1]	91	1	
[T2.5]	27		[SR2.2]	52	1	[ST2.4]	15	1	[CMVM2.2]	88		
[T2.6]	28		[SR2.4]	46		[ST2.5]	9		[CMVM2.3]	64		
[T2.8]	28	1	[SR2.5]	35	1	[ST2.6]	9		[CMVM3.1]	2		
[T3.1]	3		[SR3.1]	22		[ST3.3]	2		[CMVM3.2]	9		
[T3.2]	16		[SR3.2]	11		[ST3.4]	[ST3.4] 1		[CMVM3.3]	12		
[T3.3]	15		[SR3.3]	9		[ST3.5]	2		[CMVM3.4]	13		
[T3.4]	14		[SR3.4]	24					[CMVM3.5]	0		
[T3.5]	5											
[T3.6]	1											
		ACTIVITY	119 BSIM M	10 activities, show	vn in 4 domains a	nd 12 practices]					
		BSIMM10 FIRMS	Count of fir	ms (out of 122) o	bserved performi	ng each activity		-				
LEGEN	1D		Most comm	ion activity within	a practice							
		1	Most comm	ion activity in pra-	ctice was observed	d in this assessme	nc					
			A practice v	A practice where firm's high-water mark score is below the BSIMM10 average								
Table 1. BS	Table 1. BSIMM Example Firm Score card A score card is helf ultrar understanding efforts currently underway and where to focus pert											

Supplier institutionalizes secure development practices

"Building Security In Maturity Model" scorecard is one way to gauge practice adoption

Source: S. Migues, J. Steven, M. Ware, BSIMM10, https://www.bsimm.com/content/dam/bsimm/reports/bsimm10.pdf

BUILDING SECURITY IN MATURITY MODEL (BSIMM) – VERSION 10 | PAGE 13

Software Engineering Institute

Carnegie Mellon University

Open source components could use a proxy process for supplier commitments

Develop an alternative evaluation method for open source component acceptance, e.g.,

- History of project
- Length of existence
- Frequency of updates and fixed
- Composition of committers
- Popularity

ATOS' QSOS is one example with four steps:

- Define
- Evaluate
- Select
- Qualify

Sources: http://www.qsos.org/method; http://dist.qsos.org/qsos-2.0_en.pdf

Software Engineering Institute | Carnegie Mellon University

Product security: Evaluate a product's threat resistance

What product characteristics minimize opportunities to enter and change the product's security characteristics?

- Attack surface evaluation: Exploitable features have been identified and eliminated where possible
- Design and coding weaknesses associated with exploitable features have been identified and mitigated (CWE)
 - Dynamic, Static, Interactive Application Security Testing (DAST, SAST, IAST)
 - Independent validation and verification of threat resistance
- Delivery in or compatibility with Runtime Application Self Protection (RASP) containers

There is a growing body of 3rd parties who perform some of this analysis for open source components

Open source components could use a proxy process for product threat resistance

3rd party vendors have defined processes for evaluating open source components, such as

- CVE/NVD checking
- Local scanning
- Centralized distribution

Source: https://guides.sonatype.com/iqserver/technical-guides/lifecycle-scanning/; https://www.whitesourcesoftware.com/open-source-security/

Carnegie Mellon University

Establish a Software Bill of Materials

- Need to know the individual subcomponents of a piece of software. Third-party components which could transitively inject vulnerabilities.
- Example formats and specifications:
 - Software Identification (SWID) Tags
 - Common Platform Enumeration (CPE)
 - Software Package Data Exchange (SPDX)
- Participation in NTIA Software Component Transparency (Dept of Commerce)
- Challenges

٠

- Large aggregations/granularity
- Component removal
- Fragmentation of components

Source: Home page https://www.ntia.doc.gov/SoftwareTransparency;

Software Engineering Institute

"Survey of Existing SBOM Formats and Standards," NTIA, Sept 3, 2019, https://www.ntia.doc.gov/files/ntia/publications/ntia_sbom_formats_and_standards_whitepaper_2019_0904.pdf

Carnegie Mellon University

Avoid fragmentation: Versions of Android illustrate open source fragmentation

Device model																										
					CT-95830		GT	[54(н) нтс		9	LG-P990		A	S	S	G	М.,	. м	М	LG-P GT-I				
			GT-19000				AD			D And		DR	MT1	MT15i			HT.		W	19i	LG	-P9 R80	M	B200 НТС		
GT-19100										нтс	S	MT	. DR	GT-I		ΧТ	. L		GT-I	L	GT-I					
						HTC Desire		Ne	x	SP	. sc.	GT	SA	V	M670	XT9		LG-	P3	s	LG		LGL5			
				-			⊥	_				SF	PH-D	ZTE		Dr	М		Dell.	Ц	5G					
			Desire HD		GT-N7000			Ι.	s	SCH	GT-S	85		MI-OR8		0i N	L	J20i	GT.	ZT	HT	U8				
								GT.	- A	G	T-155.	SCH-I		S GT-I		н	3 d		SC		LG	I	SA			
						HTC Incredible S		GT-S5360		A	953	Ţ.	SP.	.x5	s	ST.	Opti	la l	╈	┲┷	Ū,	-	une	┥		
GT-S5570	GT-P1000 H		GT-P1000 HTC Se		P1000 HTC Se					GT-19003		GT PG.	М	GT	T	X8	S Le.				h		╁			
						нтс	C W GT-S5.		GT-S.	S		. н.	. 🖸	L.			Ga.		뉨	Ę.		Ľ,	1		ф	
	MDE05		525	1		MB860		Π	Bla.	-	X1.	LT.	Vi	SK.	Vod.	<u></u>	╓┼	##	Ш	Щ	ЗЩ	цĒ				
HTC Desir	WB323		LT15i		HTC Vision		s .		╈	TIS	1		M8. . M.	1¢	讎	ЦĠ		壯	讄							
		HTC Desire.		e		V40:	Motor	SPH-D710	<u>C.</u>	P	막		S	H	Ë					Н	擸					
PC36100	GT-19	T-I9				X10i				Ψ	Ē	E Z	10 L	м	ЪH,		밢	Ħ		5						
	HTC Wildfi		HTC Wildfir.		HTC Wildfir		LG-P500		LT18i NexuPG8		S			ᆊ	5	1 5										

Source: http://opensignal.com/reports/fragmentation.php

(https://web.archive.org/web/20150326232333/http://opensignal.com/reports/fragmentation-2013/fragmentation-2013.pdf)

Software Engineering Institute Car

Carnegie Mellon University

Product distribution: Establishing good product distribution practices

Recognize that supply chain risks are accumulated

- Establish provenance procedures
 - Subcontractor/COTS-product supply chain risk is inherited by those that use that software, tool, system, etc.

Apply to the acquiring organizations and their suppliers

- Require good security practices by their suppliers
- Assess the security of delivered products
- Address the additional risks associated with using the product in their context

Minimize internal suppliers

- Single point of distribution to internal development community
- No cloning

tware Engineering Institute | Carnegie Mellon University

Corruption along the supply chain is easy

Unexpected or unintended behaviors in components

Knowledgeable analysts can convert packaged binary into malware in minutes

Sources: Pedro Candel, Deloitte CyberSOC Academy , Deloitte

http://www.8enise.webcastlive.es/webcast.htm?video=08; http://www.microsoft.com/Products/Games/FSInsider/freeflight/PublishingImages/scene.jpg; https://www.withfriendship.com/user/mithunss/easter-eggs-in-microsoft-products.php

Software Engineering Institute | Ca

Carnegie Mellon University

Distribution Environment Attacks

Types of supply chain attacks that leveraged compromised code and the development environment:

Download site attacks

- Havex/Dragonfly (2014), KingSlayer (2015), Fioxif/CCleaner (2017), • Expensive Wall (2017), Shadowpad (2017)
- Repackaged applications with malware •

oftware Engineering Institute

Up to 50% of Android applications on some download sites are repackaged applications with malware

Patch site attacks

NotPetya/MeDoc (2017) paralyzed networks worldwide

Sources: H. Gonzalez, N. Stakhanova, A. Ghorbani, "Measuring code reused in Android apps," 2016 14th Annual Conference on Privacy, Security and Trust (PST), Dec 12-14, 2016, https://ieeexplore.ieee.org/document/7906925

Maintain operational attack resistance

Usage changes the attack surface and potential attacks for the product

- Change in feature usage or risks
- Supplier risk mitigations adequate for desired usage
- Effects of vendor upgrades/patches and local configuration changes
- Effects of integration into operations (system of systems)

Preserving product attack resistance with product deployment

- Maintaining inventory of components
- Patching and version upgrades (component lifecycle management)

ftware Engineering Institute | Carnegie Mellon University

Steel furnaces have been successfully attacked through changed operational assumptions

"Steelworks compromise causes massive damage to furnace.

One of the most concerning was a targeted APT attack on a German steelworks which ended in the attackers gaining access to the business systems and through them to the production network (including SCADA). The effect was that the attackers gained control of a steel furnace and this caused massive damages to the plant."

Source: Sources: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Lageberichte/Lagebericht2014.pdf?__blob=publicationFile;

http://www.resilienceoutcomes.com/state-ict-security/

Software Engineering Institute Carnegie Mellon University

Connecting automotive systems to internet opens system to attack thru changed operational environment

Extending systems opens vulnerabilities not anticipated

- Optimizations performed assuming one attack method
- Assumptions no longer hold with additional integrations

Source: http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Software Engineering Institute | Carnegie Mellon University

Vulnerabilities emerge in existing code

Defects in functionality found early and in new code

Vulnerabilities found in legacy code and late ("honeymoon effect")

New operating environments are a major cause of vulnerabilities

Carefully weigh benefits (risk reduction) vs cost (time, space) of implementing defense in depth.

Clark, Frei, Blaze, Smith, "Familiarity Breeds Contempt: The Honeymoon Effect and the Role of Legacy Code in Zero-Day Vulnerabilities," ACSAC '10 Dec. 6-10, 2010, p. 251-260."

Software Engineering Institute Carneg

Carnegie Mellon University

Staying current with software supply chain issues

Government, industry and standards organizations are working together to improve the software supply chain

- DHS' CISA ICT Supply Chain Risk Management Task Force
- Dept of Commerce's NTIA Software Component Transparency
- NIST Supply Chain Risk Management Practices for Federal Information Systems and Organizations

OBJECTIVE 6

To integrate supply chain risk management (SCRM) concepts into the RMF to protect against untrustworthy suppliers, insertion of counterfeits, tampering, unauthorized production, theft, insertion of malicious code, and poor manufacturing and development practices throughout the SDLC.

And more is being worked on

(Ron Ross, RMF 2.0 presentation, chart 20, https://csrc.nist.gov/CSRC/media/Presentation s/RMF-2-0-Risk-Management-Framework-Simplify-Inno/images-media/sp800-37r2-ipdrollout-DOJ-20180509.pdf)

Software Engineering Institute Car

Carnegie Mellon University

Contact Information

Mark Sherman

Technical Director Cyber Security Foundations Telephone: +1 412-268-9223 Email: <u>mssherman@sei.cmu.edu</u>

Web

www.sei.cmu.edu/contact.cfm

U.S. Mail

Software Engineering Institute Customer Relations 4500 Fifth Avenue Pittsburgh, PA 15213-2612 USA

Customer Relations

Email: info@sei.cmu.edu Telephone: +1 412-268-5800 SEI Phone: +1 412-268-5800 SEI Fax: +1 412-268-6257

Software Engineering Institute | Carnegie Mellon University

Further reading

Alberts, Christopher, et al., "Introduction to the Security Engineering Risk Analysis (SERA) Framework," Software Engineering Institute, Nov 2014, http://resources.sei.cmu.edu/asset_files/TechnicalNote/2014_004_001_427329.pdf

Alberts, Christopher, John Haller, Charles M. Wallen and Carol Woody, "Assessing DoD System Acquisition Supply Chain Risk Management," CrosssTalk - The Journal of Defense Software Engineering, May/June 2017, http://www.crosstalkonline.org/storage/issue-archives/2017/201705/201705-albert.pdf

Axelrod, C. Warren, "Mitigating Software Supply Chain Risk," ISCA Journal Online, Vol 4., 2013, <u>http://www.isaca.org/Journal/Past-Issues/2013/Volume-4/Pages/JOnline-Mitigating-Software-Supply-Chain-Risk.aspx</u>

Axelrod, C. Warren, "Malware, Weakware and the Security of Software Supply Chains," Cross-Talk, March/April 2014, p. 20, http://www.crosstalkonline.org/storage/issue-archives/2014/201403/201403-Axelrod.pdf

Ellison, Robert, et al, "Software Supply Chain Risk Management: From Products to Systems of Systems," Software Engineering Institute, Dec 2010, https://resources.sei.cmu.edu/asset_files/technicalnote/2010_004_001_15194.pdf

Ellison, Robert, et al. "Evaluating and Mitigating Software Supply Chain Security Risks," Software Engineering Institute, May 2010, http://resources.sei.cmu.edu/asset_files/technicalnote/2010_004_001_15176.pdf

Ellison, Robert and Woody, Carol, "Supply-Chain Risk Management: Incorporating Security into Software Development," Proceedings of the 43rd Hawaii International Conference on System Sciences, 2010, <u>http://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_297341.pdf</u>

Jarzombek, Joe, "Collaboratively Advancing Strategies to Mitigate Software Supply Chain Risks," July 30, 2009, http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2009-07/ispab_july09-jarzombek_swa-supply-chain.pdf

Software Assurance Forum, Processes and Practices Working Group, "Software Assurance Checklist for Software Supply Chain Risk Management," https://buildsecurityin.us-cert.gov/sites/default/files/20101208-SwAChecklist.pdf

"Software Supply Chain Risk Management & Due-Diligence," Software Assurance Pocket Guide Series: Acquisition & Outsourcing, Vol II, Version 1.2, June 16, 2009, <u>https://buildsecurityin.us-cert.gov/sites/default/files/DueDiligenceMWV12_01AM090909.pdf</u>

Third Party Software Security Working Group, "Appropriate Software Security Control Types for Third Party Service and Product Providers," Financial Services Information Sharing and Analysis Center, 2013

http://docs.ismgcorp.com/files/external/WP_FSISAC_Third_Party_Software_Security_Working_Group.pdf

Software Engineering Institute | Carnegie Mellon University