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The SEI is a DoD R&D Federally Funded 
Research and Development Center

Established in 1984 at 
Carnegie Mellon University

~700 employees (ft + pt), of whom 
about 70% are engaged in technical 
work

Initiated CERT cybersecurity 
program in 1988 

Offices in Pittsburgh and DC, with 
several locations near customer 
facilities

~$145M in annual funding
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Cybersecurity is a lifecycle issue
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Building skills (Workforce development)

Metrics, Models, and Measurement

Cross lifecycle issues

Automation (DevOps)
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Procurement / Acquisition (Supply chain)

Building skills (Workforce development)

Metrics, Models, and Measurement

Cross lifecycle issues

Automation (DevOps)
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Conventional view of supply chain risk

Sources: http://www.nytix.com/NewYorkCity/articles/handbags.html; http://www.laserwisetech.co.nz/secret.php; 
http://www.muscatdaily.com/Archive/Oman/Fake-car-parts-contribute-to-rise-in-road-accidents-Experts; 
http://www.andovercg.com/services/cisco-counterfeit-wic-1dsu-t1.shtml; http://unites-systems.com/l.php?id=191

http://www.nytix.com/NewYorkCity/articles/handbags.html
http://www.laserwisetech.co.nz/secret.php
http://www.muscatdaily.com/Archive/Oman/Fake-car-parts-contribute-to-rise-in-road-accidents-Experts
http://www.andovercg.com/services/cisco-counterfeit-wic-1dsu-t1.shtml
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Supply chains maintain product properties

Cold Chain

A cold chain is a temperature-
controlled supply chain. An 
unbroken cold chain is an 
uninterrupted series of storage and 
distribution activities which 
maintain a given temperature 
range.

Source: Wikipedia, https://en.wikipedia.org/wiki/Cold_chain
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Value chains add value at each step

Value chain

The idea of the value chain is 
based on the process view … 
seeing a manufacturing (or 
service) organization … made up 
of subsystems each with inputs, 
transformation processes and 
outputs.

Source: https://en.wikipedia.org/wiki/Value_chain
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Evolution of software development

Custom development – context:
• Software was limited

 Size
 Function
 Audience

• Each organization 
employed developers

• Each organization created 
their own software

Shared development – ISVs 
(COTS) – context:
• Function largely understood

 Automating existing processes
• Grown beyond ability for 

using organization to 
develop economically

• Outside of core 
competitiveness by 
acquirers

Supply chain: practically none Supply chain: software supplier
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Development is now assembly

General 
Ledger

SQL Server WebSphere

HTTP 
server

XML Parser

Oracle DB SIP servlet 
container

GIF library

Note: hypothetical application composition

Collective development –
context:
• Too large for single 

organization
• Too much specialization
• Too little value in individual 

components

Supply chain: long
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Software supply (value) chain (tree) for 
assembled software 
Expanding the scope and complexity of acquisition and deployment
Visibility and direct controls are limited (only in shaded area)

Source: “Scope of Supplier Expansion and Foreign 
Involvement” graphic in DACS 
www.softwaretechnews.com Secure Software Engineering, 
July 2005 article “Software Development Security: A Risk 
Management Perspective” synopsis of May 2004 GAO-04-
678 report “Defense Acquisition: Knowledge of Software 
Suppliers Needed to Manage Risks”   

http://www.softwaretechnews.com/
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Supply chain breadth: Assembly – Apache 
Example

“First level dependencies of the Apache web server”

From: Rob Graham, Software Bill of Materials (SBoM) - Does It Work for DevSecOps?, Jan 14, 2019, 
https://www.alienvault.com/blogs/security-essentials/software-bill-of-materials-sbom-does-it-work-for-devsecops



14

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been 
approved for public release and unlimited 
distribution. 

Supply chain depth: supply chain has a long 
path

App server

HTTP 
server

XML 
Parser

C  
Libraries

C compiler

Generated 
Parser

Parser 
Generator

2nd

Compiler
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Large number of components in assembled 
software

Sontaype:
• 85% of modern applications are 

assembled from open source 
components; can be as high as 
97% for web applications

• Average has 460 components; 
some applications had 2,000-4,000 
OSS

Gonzalez, et al:
• Applications contain over 80% of 

common code; Unique code only 
represents 5% of all code

Sources: Sonatype, “2019 State of the Software Supplu Chain”, https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-
2019_jun16-DRAFT.pdf; H. Gonzalez, N. Stakhanova, A. Ghorbani, “Measuring code reused in Android apps,” 2016 14th Annual 
Conference on Privacy, Security and Trust (PST), Dec 12-14, 2016, https://ieeexplore.ieee.org/document/7906925

https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf
https://ieeexplore.ieee.org/xpl/conhome/7899233/proceeding
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Cloning represents additional, hidden 
components in the supply chain

Cloning: cutting and 
pasting code –
“microcomponents”
• Typically10–15% of the source code 

in large software systems is part of 
one or more code clones [Kapser]

• 19% of X Windows System [Baker]
• 20% of other large programs (>1M 

LOC) [Baker]
• Throughout Linux

• 22.7% of Linux kernel [Jang]
• 190,000 copy-pasted segments in Linux [Li]
• 150,000 copy-pasted segments in 

FreeBSD. [Li]
• 29% of JDK [Jangh]

Source: B. Baker, “On Finding Duplication and Near-Duplication in Large Software Systems,” 
Proceedings of 2nd Working Conference on Reverse Engineering, Jul 14-16, 1995, 
https://ieeexplore.ieee.org/abstract/document/514697 ;

L. Jiang, G. Misherghi, Z.Su, S. Glondu, “DECKARD: Scalable and Accurate Tree-based 
Detection of Code Clones,” 29th International Conference on Software Engineering (ICSE’07), 
May 20-26, 2007, https://web.cs.ucdavis.edu/~su/publications/icse07.pdf

Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: Finding Copy-Paste and Related Bugs in 
Large-Scale Software Code,” IEEE Transactions on Software Engineering, Vol 32, No. 3, Mar 
2006, https://people.cs.uchicago.edu/~shanlu/paper/TSE-CPMiner.pdf

c. Kapser, “Toward an Understanding of Software Code Cloning as a Development Practice,” 
PhD Thesis, U. Waterloo, 2009, 
https://pdfs.semanticscholar.org/bdae/5ede2999eae51645b5c91004706485a53af0.pdf

https://ieeexplore.ieee.org/xpl/conhome/3936/proceeding
https://ieeexplore.ieee.org/abstract/document/514697
https://ieeexplore.ieee.org/xpl/conhome/4222553/proceeding
https://web.cs.ucdavis.edu/%7Esu/publications/icse07.pdf
https://people.cs.uchicago.edu/%7Eshanlu/paper/TSE-CPMiner.pdf
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Open source is not secure

Heartbleed and 
Shellshock were found 
by exploitation

Other open source 
software illustrates 
vulnerabilities from cursory 
inspection

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck, 
https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf; Sonatype, Sonatype
Open Source Development and Application Security Survey; Sonatype, “2019 State of the Software Supplu Chain”, 
https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf

https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf
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Open source is not secure

Heartbleed and 
Shellshock were found 
by exploitation

Other open source 
software illustrates 
vulnerabilities from cursory 
inspection

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck, 
https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf; Sonatype, Sonatype
Open Source Development and Application Security Survey; Sonatype, “2019 State of the Software Supplu Chain”, 
https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf

• 51% of JavaScript components have a known 
security vulnerability

• 1 in 10 downloads of Java component releases 
have a known security vulnerability

• 71% increase in open source related breaches 
over the last 5 years

https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf


19

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been 
approved for public release and unlimited 
distribution. 

Corruption in the tool chain already exists

• XcodeGhost corrupted Apple’s 
development environment

• Major programs affected

• WeChat
• Badu Music
• Angry Birds 2
• Heroes of Order & Chaos
• iOBD2

• Not alone
• Expensive Wall (2017)
• HackTask (2017)

Sources: http://www.macrumors.com/2015/09/24/xcodeghost-top-25-apps-apple-list/
http://www.itntoday.com/2015/09/the-85-ios-apps-affected-by-xcodeghost.html

http://www.macrumors.com/2015/09/24/xcodeghost-top-25-apps-apple-list/
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AI and Data Make Supply Chain Issues Worse

Machine Learning Frameworks

• Pandas
• Numpy
• Scikit-learn
• Matplotlib
• TensorFlow
• Keras
• Seaborn
• Pytorch & Torch

Data Sources

• Kaggle
• UCI Machine Learning 

Repository
• Find Datasets
• Data.gov
• xView
• ImageNet
• Google’s Open Images

Newer, advanced software depends on these additional “supplies”

Relatively less is known about the security of these “supplies”
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Machine learning system face training data 
supply challenges

Rich supplies of “deep 
fakes” are readily 
accessible

Source: https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
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Poor detection of deep fakes
Cannot reliable 
verify that 
training data 
obtained through 
a supply chain

Preconfigured 
machine 
learning systems 
provide a 
vehicle to 
distribute bad 
training data

Source: 
http://kaldir.vc.in.tum.de/faceforensics
_benchmark/index.php (as of 9/25/19)

http://kaldir.vc.in.tum.de/faceforensics_benchmark/index.php
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Reducing software supply chain risk 
factors

Software supply chain risk for 
a product needs to be reduced 

to acceptable level

Supplier follows 
practices that 
reduce supply 

chain risks

Delivered or 
updated product 

is acceptably 
secure

Product 
Distribution

Operational 
Product 
Control

Product is used in 
a secure manner

Methods of 
transmitting the 
product to the 

purchaser guard 
again tampering

Product 
Security

Supplier 
Capability
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Supplier capability: security commitment 
evidence

Supplier institutionalizes 
secure development 
practices

“Building Security In 
Maturity Model” 
scorecard is one way to 
gauge practice adoption

Source: S. Migues, J. Steven, M. Ware, BSIMM10, 
https://www.bsimm.com/content/dam/bsimm/reports/bsimm10.pdf
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Open source components could use a proxy 
process for supplier commitments

Develop an alternative evaluation 
method for open source 
component acceptance, e.g.,

• History of project
• Length of existence
• Frequency of updates and fixed
• Composition of committers
• Popularity

ATOS’ QSOS is one example with 
four steps:

• Define
• Evaluate
• Select
• QualifySources: http://www.qsos.org/method; http://dist.qsos.org/qsos-2.0_en.pdf

http://www.qsos.org/method
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Product security: Evaluate a product’s threat 
resistance
What product characteristics minimize opportunities to enter and change 
the product’s security characteristics?
• Attack surface evaluation: Exploitable features have been identified and 

eliminated where possible
• Design and coding weaknesses associated with exploitable features have 

been identified and mitigated (CWE)
– Dynamic, Static, Interactive Application Security Testing (DAST, SAST, 

IAST)
– Independent validation and verification of threat resistance

• Delivery in or compatibility with Runtime Application Self Protection (RASP) 
containers

There is a growing body of 3rd parties who perform some of this analysis 
for open source components
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Open source components could use a proxy 
process for product threat resistance

3rd party vendors have 
defined processes for 
evaluating open source 
components, such as

• CVE/NVD checking
• Local scanning
• Centralized distribution

Source: https://guides.sonatype.com/iqserver/technical-guides/lifecycle-scanning/; https://www.whitesourcesoftware.com/open-source-security/

https://guides.sonatype.com/iqserver/technical-guides/lifecycle-scanning/
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Establish a Software Bill of Materials

• Need to know the individual sub-
components of a piece of software. 
Third-party components which could 
transitively inject vulnerabilities.

• Example formats and specifications:
• Software Identification (SWID) Tags
• Common Platform Enumeration (CPE) 
• Software Package Data Exchange (SPDX)

• Participation in NTIA Software 
Component Transparency (Dept of 
Commerce) 

• Challenges
• Large aggregations/granularity
• Component removal
• Fragmentation of components

Source: Home page https://www.ntia.doc.gov/SoftwareTransparency;

“Survey of Existing SBOM Formats and Standards,” NTIA, Sept 3, 2019, 
https://www.ntia.doc.gov/files/ntia/publications/ntia_sbom_formats_and_standards_whitepaper_2019_0904.pdf

https://www.ntia.doc.gov/SoftwareTransparency
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Avoid fragmentation: Versions of Android 
illustrate open source fragmentation

Source: http://opensignal.com/reports/fragmentation.php
(https://web.archive.org/web/20150326232333/http://opensignal.com/reports/fragmentation-2013/fragmentation-2013.pdf)

http://opensignal.com/reports/fragmentation.php
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Product distribution: Establishing good product 
distribution practices

Recognize that supply chain risks are accumulated 
• Establish provenance procedures

– Subcontractor/COTS-product supply chain risk is inherited by those that 
use that software, tool, system, etc.

Apply to the acquiring organizations and their suppliers 
• Require good security practices by their suppliers
• Assess the security of delivered products
• Address the additional risks associated with using the product in their context

Minimize internal suppliers
• Single point of distribution to internal development community
• No cloning
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Corruption along the supply chain is easy

Knowledgeable 
analysts can convert 
packaged binary into 
malware in minutes

Sources: Pedro Candel, Deloitte CyberSOC Academy , Deloitte

http://www.8enise.webcastlive.es/webcast.htm?video=08; http://www.microsoft.com/Products/Games/FSInsider/freeflight/PublishingImages/scene.jpg; 
https://www.withfriendship.com/user/mithunss/easter-eggs-in-microsoft-products.php

Unexpected or 
unintended 
behaviors in 
components

http://www.microsoft.com/Products/Games/FSInsider/freeflight/PublishingImages/scene.jpg
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Types of supply chain attacks that leveraged compromised code and the 
development environment:

Download site attacks
• Havex/Dragonfly (2014), KingSlayer (2015), Fioxif/CCleaner (2017), 

Expensive Wall (2017), Shadowpad (2017)
• Repackaged applications with malware

• Up to 50% of Android applications on some download sites are repackaged 
applications with malware

Patch site attacks
• NotPetya/MeDoc (2017) paralyzed networks worldwide

Distribution Environment Attacks

Sources: H. Gonzalez, N. Stakhanova, A. Ghorbani, “Measuring code reused in Android apps,” 2016 14th Annual Conference on 
Privacy, Security and Trust (PST), Dec 12-14, 2016, https://ieeexplore.ieee.org/document/7906925

https://ieeexplore.ieee.org/xpl/conhome/7899233/proceeding
https://ieeexplore.ieee.org/document/7906925
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Maintain operational attack resistance

Usage changes the attack surface and potential attacks for the product
• Change in feature usage or risks
• Supplier risk mitigations adequate for desired usage
• Effects of vendor upgrades/patches and local configuration changes
• Effects of integration into operations (system of systems)

Preserving product attack resistance with product deployment
• Maintaining inventory of components
• Patching and version upgrades (component lifecycle management)
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Steel furnaces have been successfully attacked 
through changed operational assumptions

“Steelworks compromise causes 
massive damage to furnace.
One of the most concerning was a 
targeted APT attack on a German 
steelworks which ended in the attackers 
gaining access to the business systems 
and through them to the production 
network (including SCADA). The effect 
was that the attackers gained control of 
a steel furnace and this caused massive 
damages to the plant.”

Source: Sources: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Lageberichte/Lagebericht2014.pdf?__blob=publicationFile;

http://www.resilienceoutcomes.com/state-ict-security/
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Connecting automotive systems to internet 
opens system to attack thru changed 
operational environment

Extending systems opens 
vulnerabilities not anticipated
• Optimizations performed 

assuming one attack method
• Assumptions no longer hold 

with additional integrations

Source: http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
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Vulnerabilities emerge in existing code

Defects in functionality found early 
and in new code

Vulnerabilities found in legacy code 
and late (“honeymoon effect”)

New operating environments are a 
major cause of vulnerabilities

Clark, Frei, Blaze, Smith, “Familiarity Breeds Contempt: The Honeymoon Effect and the Role of Legacy Code in Zero-Day 
Vulnerabilities,” ACSAC ’10 Dec. 6-10, 2010, p. 251-260.”

Carefully weigh benefits (risk reduction) vs cost (time, space) of 
implementing defense in depth.
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Staying current with software supply chain 
issues
Government, industry and standards organizations are working together 
to improve the software supply chain

• DHS’ CISA ICT Supply Chain Risk Management Task Force
• Dept of Commerce’s NTIA Software Component Transparency 
• NIST Supply Chain Risk Management Practices for Federal 

Information Systems and Organizations

And more is being 
worked on
(Ron Ross, RMF 2.0 presentation, chart 20, 
https://csrc.nist.gov/CSRC/media/Presentation
s/RMF-2-0-Risk-Management-Framework-
Simplify-Inno/images-media/sp800-37r2-ipd-
rollout-DOJ-20180509.pdf)
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