
© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Growing Risks in the
Software Supply Chain

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Mark Sherman, Ph.D.
Technical Director, CERT

Platform Security Summit 2019
Oct 3, 2019

2

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Copyright 2019 Carnegie Mellon University.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-
0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as
an official Government position, policy, or decision, unless designated by other documentation.
References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon
University or its Software Engineering Institute.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.
This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.
Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM19-0965

3

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

The SEI is a DoD R&D Federally Funded
Research and Development Center

Established in 1984 at
Carnegie Mellon University

~700 employees (ft + pt), of whom
about 70% are engaged in technical
work

Initiated CERT cybersecurity
program in 1988

Offices in Pittsburgh and DC, with
several locations near customer
facilities

~$145M in annual funding

4

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Cybersecurity is a lifecycle issue

5

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Building skills (Workforce development)

Metrics, Models, and Measurement

Cross lifecycle issues

Automation (DevOps)

6

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Procurement / Acquisition (Supply chain)

Building skills (Workforce development)

Metrics, Models, and Measurement

Cross lifecycle issues

Automation (DevOps)

7

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Conventional view of supply chain risk

Sources: http://www.nytix.com/NewYorkCity/articles/handbags.html; http://www.laserwisetech.co.nz/secret.php;
http://www.muscatdaily.com/Archive/Oman/Fake-car-parts-contribute-to-rise-in-road-accidents-Experts;
http://www.andovercg.com/services/cisco-counterfeit-wic-1dsu-t1.shtml; http://unites-systems.com/l.php?id=191

http://www.nytix.com/NewYorkCity/articles/handbags.html
http://www.laserwisetech.co.nz/secret.php
http://www.muscatdaily.com/Archive/Oman/Fake-car-parts-contribute-to-rise-in-road-accidents-Experts
http://www.andovercg.com/services/cisco-counterfeit-wic-1dsu-t1.shtml

8

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Supply chains maintain product properties

Cold Chain

A cold chain is a temperature-
controlled supply chain. An
unbroken cold chain is an
uninterrupted series of storage and
distribution activities which
maintain a given temperature
range.

Source: Wikipedia, https://en.wikipedia.org/wiki/Cold_chain

9

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Value chains add value at each step

Value chain

The idea of the value chain is
based on the process view …
seeing a manufacturing (or
service) organization … made up
of subsystems each with inputs,
transformation processes and
outputs.

Source: https://en.wikipedia.org/wiki/Value_chain

10

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Evolution of software development

Custom development – context:
• Software was limited

 Size
 Function
 Audience

• Each organization
employed developers

• Each organization created
their own software

Shared development – ISVs
(COTS) – context:
• Function largely understood

 Automating existing processes
• Grown beyond ability for

using organization to
develop economically

• Outside of core
competitiveness by
acquirers

Supply chain: practically none Supply chain: software supplier

11

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Development is now assembly

General
Ledger

SQL Server WebSphere

HTTP
server

XML Parser

Oracle DB SIP servlet
container

GIF library

Note: hypothetical application composition

Collective development –
context:
• Too large for single

organization
• Too much specialization
• Too little value in individual

components

Supply chain: long

12

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Software supply (value) chain (tree) for
assembled software
Expanding the scope and complexity of acquisition and deployment
Visibility and direct controls are limited (only in shaded area)

Source: “Scope of Supplier Expansion and Foreign
Involvement” graphic in DACS
www.softwaretechnews.com Secure Software Engineering,
July 2005 article “Software Development Security: A Risk
Management Perspective” synopsis of May 2004 GAO-04-
678 report “Defense Acquisition: Knowledge of Software
Suppliers Needed to Manage Risks”

http://www.softwaretechnews.com/

13

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Supply chain breadth: Assembly – Apache
Example

“First level dependencies of the Apache web server”

From: Rob Graham, Software Bill of Materials (SBoM) - Does It Work for DevSecOps?, Jan 14, 2019,
https://www.alienvault.com/blogs/security-essentials/software-bill-of-materials-sbom-does-it-work-for-devsecops

14

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Supply chain depth: supply chain has a long
path

App server

HTTP
server

XML
Parser

C
Libraries

C compiler

Generated
Parser

Parser
Generator

2nd

Compiler

15

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Large number of components in assembled
software

Sontaype:
• 85% of modern applications are

assembled from open source
components; can be as high as
97% for web applications

• Average has 460 components;
some applications had 2,000-4,000
OSS

Gonzalez, et al:
• Applications contain over 80% of

common code; Unique code only
represents 5% of all code

Sources: Sonatype, “2019 State of the Software Supplu Chain”, https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-
2019_jun16-DRAFT.pdf; H. Gonzalez, N. Stakhanova, A. Ghorbani, “Measuring code reused in Android apps,” 2016 14th Annual
Conference on Privacy, Security and Trust (PST), Dec 12-14, 2016, https://ieeexplore.ieee.org/document/7906925

https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf
https://ieeexplore.ieee.org/xpl/conhome/7899233/proceeding

16

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Cloning represents additional, hidden
components in the supply chain

Cloning: cutting and
pasting code –
“microcomponents”
• Typically10–15% of the source code

in large software systems is part of
one or more code clones [Kapser]

• 19% of X Windows System [Baker]
• 20% of other large programs (>1M

LOC) [Baker]
• Throughout Linux

• 22.7% of Linux kernel [Jang]
• 190,000 copy-pasted segments in Linux [Li]
• 150,000 copy-pasted segments in

FreeBSD. [Li]
• 29% of JDK [Jangh]

Source: B. Baker, “On Finding Duplication and Near-Duplication in Large Software Systems,”
Proceedings of 2nd Working Conference on Reverse Engineering, Jul 14-16, 1995,
https://ieeexplore.ieee.org/abstract/document/514697 ;

L. Jiang, G. Misherghi, Z.Su, S. Glondu, “DECKARD: Scalable and Accurate Tree-based
Detection of Code Clones,” 29th International Conference on Software Engineering (ICSE’07),
May 20-26, 2007, https://web.cs.ucdavis.edu/~su/publications/icse07.pdf

Z. Li, S. Lu, S. Myagmar, Y. Zhou, “CP-Miner: Finding Copy-Paste and Related Bugs in
Large-Scale Software Code,” IEEE Transactions on Software Engineering, Vol 32, No. 3, Mar
2006, https://people.cs.uchicago.edu/~shanlu/paper/TSE-CPMiner.pdf

c. Kapser, “Toward an Understanding of Software Code Cloning as a Development Practice,”
PhD Thesis, U. Waterloo, 2009,
https://pdfs.semanticscholar.org/bdae/5ede2999eae51645b5c91004706485a53af0.pdf

https://ieeexplore.ieee.org/xpl/conhome/3936/proceeding
https://ieeexplore.ieee.org/abstract/document/514697
https://ieeexplore.ieee.org/xpl/conhome/4222553/proceeding
https://web.cs.ucdavis.edu/%7Esu/publications/icse07.pdf
https://people.cs.uchicago.edu/%7Eshanlu/paper/TSE-CPMiner.pdf

17

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Open source is not secure

Heartbleed and
Shellshock were found
by exploitation

Other open source
software illustrates
vulnerabilities from cursory
inspection

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck,
https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf; Sonatype, Sonatype
Open Source Development and Application Security Survey; Sonatype, “2019 State of the Software Supplu Chain”,
https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf

https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf

18

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Open source is not secure

Heartbleed and
Shellshock were found
by exploitation

Other open source
software illustrates
vulnerabilities from cursory
inspection

Sources: Steve Christey (MITRE) & Brian Martin (OSF), Buying Into the Bias: Why Vulnerability Statistics Suck,
https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf; Sonatype, Sonatype
Open Source Development and Application Security Survey; Sonatype, “2019 State of the Software Supplu Chain”,
https://www.sonatype.com/hubfs/SSC/2019%20SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf

• 51% of JavaScript components have a known
security vulnerability

• 1 in 10 downloads of Java component releases
have a known security vulnerability

• 71% increase in open source related breaches
over the last 5 years

https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-Vulnerability-Statistics-Suck-Slides.pdf

19

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Corruption in the tool chain already exists

• XcodeGhost corrupted Apple’s
development environment

• Major programs affected

• WeChat
• Badu Music
• Angry Birds 2
• Heroes of Order & Chaos
• iOBD2

• Not alone
• Expensive Wall (2017)
• HackTask (2017)

Sources: http://www.macrumors.com/2015/09/24/xcodeghost-top-25-apps-apple-list/
http://www.itntoday.com/2015/09/the-85-ios-apps-affected-by-xcodeghost.html

http://www.macrumors.com/2015/09/24/xcodeghost-top-25-apps-apple-list/

20

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

AI and Data Make Supply Chain Issues Worse

Machine Learning Frameworks

• Pandas
• Numpy
• Scikit-learn
• Matplotlib
• TensorFlow
• Keras
• Seaborn
• Pytorch & Torch

Data Sources

• Kaggle
• UCI Machine Learning

Repository
• Find Datasets
• Data.gov
• xView
• ImageNet
• Google’s Open Images

Newer, advanced software depends on these additional “supplies”

Relatively less is known about the security of these “supplies”

21

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Machine learning system face training data
supply challenges

Rich supplies of “deep
fakes” are readily
accessible

Source: https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html

22

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Poor detection of deep fakes
Cannot reliable
verify that
training data
obtained through
a supply chain

Preconfigured
machine
learning systems
provide a
vehicle to
distribute bad
training data

Source:
http://kaldir.vc.in.tum.de/faceforensics
_benchmark/index.php (as of 9/25/19)

http://kaldir.vc.in.tum.de/faceforensics_benchmark/index.php

23

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Reducing software supply chain risk
factors

Software supply chain risk for
a product needs to be reduced

to acceptable level

Supplier follows
practices that
reduce supply

chain risks

Delivered or
updated product

is acceptably
secure

Product
Distribution

Operational
Product
Control

Product is used in
a secure manner

Methods of
transmitting the
product to the

purchaser guard
again tampering

Product
Security

Supplier
Capability

24

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Supplier capability: security commitment
evidence

Supplier institutionalizes
secure development
practices

“Building Security In
Maturity Model”
scorecard is one way to
gauge practice adoption

Source: S. Migues, J. Steven, M. Ware, BSIMM10,
https://www.bsimm.com/content/dam/bsimm/reports/bsimm10.pdf

25

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Open source components could use a proxy
process for supplier commitments

Develop an alternative evaluation
method for open source
component acceptance, e.g.,

• History of project
• Length of existence
• Frequency of updates and fixed
• Composition of committers
• Popularity

ATOS’ QSOS is one example with
four steps:

• Define
• Evaluate
• Select
• QualifySources: http://www.qsos.org/method; http://dist.qsos.org/qsos-2.0_en.pdf

http://www.qsos.org/method

26

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Product security: Evaluate a product’s threat
resistance
What product characteristics minimize opportunities to enter and change
the product’s security characteristics?
• Attack surface evaluation: Exploitable features have been identified and

eliminated where possible
• Design and coding weaknesses associated with exploitable features have

been identified and mitigated (CWE)
– Dynamic, Static, Interactive Application Security Testing (DAST, SAST,

IAST)
– Independent validation and verification of threat resistance

• Delivery in or compatibility with Runtime Application Self Protection (RASP)
containers

There is a growing body of 3rd parties who perform some of this analysis
for open source components

27

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Open source components could use a proxy
process for product threat resistance

3rd party vendors have
defined processes for
evaluating open source
components, such as

• CVE/NVD checking
• Local scanning
• Centralized distribution

Source: https://guides.sonatype.com/iqserver/technical-guides/lifecycle-scanning/; https://www.whitesourcesoftware.com/open-source-security/

https://guides.sonatype.com/iqserver/technical-guides/lifecycle-scanning/

28

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Establish a Software Bill of Materials

• Need to know the individual sub-
components of a piece of software.
Third-party components which could
transitively inject vulnerabilities.

• Example formats and specifications:
• Software Identification (SWID) Tags
• Common Platform Enumeration (CPE)
• Software Package Data Exchange (SPDX)

• Participation in NTIA Software
Component Transparency (Dept of
Commerce)

• Challenges
• Large aggregations/granularity
• Component removal
• Fragmentation of components

Source: Home page https://www.ntia.doc.gov/SoftwareTransparency;

“Survey of Existing SBOM Formats and Standards,” NTIA, Sept 3, 2019,
https://www.ntia.doc.gov/files/ntia/publications/ntia_sbom_formats_and_standards_whitepaper_2019_0904.pdf

https://www.ntia.doc.gov/SoftwareTransparency

29

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Avoid fragmentation: Versions of Android
illustrate open source fragmentation

Source: http://opensignal.com/reports/fragmentation.php
(https://web.archive.org/web/20150326232333/http://opensignal.com/reports/fragmentation-2013/fragmentation-2013.pdf)

http://opensignal.com/reports/fragmentation.php

30

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Product distribution: Establishing good product
distribution practices

Recognize that supply chain risks are accumulated
• Establish provenance procedures

– Subcontractor/COTS-product supply chain risk is inherited by those that
use that software, tool, system, etc.

Apply to the acquiring organizations and their suppliers
• Require good security practices by their suppliers
• Assess the security of delivered products
• Address the additional risks associated with using the product in their context

Minimize internal suppliers
• Single point of distribution to internal development community
• No cloning

31

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Corruption along the supply chain is easy

Knowledgeable
analysts can convert
packaged binary into
malware in minutes

Sources: Pedro Candel, Deloitte CyberSOC Academy , Deloitte

http://www.8enise.webcastlive.es/webcast.htm?video=08; http://www.microsoft.com/Products/Games/FSInsider/freeflight/PublishingImages/scene.jpg;
https://www.withfriendship.com/user/mithunss/easter-eggs-in-microsoft-products.php

Unexpected or
unintended
behaviors in
components

http://www.microsoft.com/Products/Games/FSInsider/freeflight/PublishingImages/scene.jpg

32

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Types of supply chain attacks that leveraged compromised code and the
development environment:

Download site attacks
• Havex/Dragonfly (2014), KingSlayer (2015), Fioxif/CCleaner (2017),

Expensive Wall (2017), Shadowpad (2017)
• Repackaged applications with malware

• Up to 50% of Android applications on some download sites are repackaged
applications with malware

Patch site attacks
• NotPetya/MeDoc (2017) paralyzed networks worldwide

Distribution Environment Attacks

Sources: H. Gonzalez, N. Stakhanova, A. Ghorbani, “Measuring code reused in Android apps,” 2016 14th Annual Conference on
Privacy, Security and Trust (PST), Dec 12-14, 2016, https://ieeexplore.ieee.org/document/7906925

https://ieeexplore.ieee.org/xpl/conhome/7899233/proceeding
https://ieeexplore.ieee.org/document/7906925

33

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Maintain operational attack resistance

Usage changes the attack surface and potential attacks for the product
• Change in feature usage or risks
• Supplier risk mitigations adequate for desired usage
• Effects of vendor upgrades/patches and local configuration changes
• Effects of integration into operations (system of systems)

Preserving product attack resistance with product deployment
• Maintaining inventory of components
• Patching and version upgrades (component lifecycle management)

34

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Steel furnaces have been successfully attacked
through changed operational assumptions

“Steelworks compromise causes
massive damage to furnace.
One of the most concerning was a
targeted APT attack on a German
steelworks which ended in the attackers
gaining access to the business systems
and through them to the production
network (including SCADA). The effect
was that the attackers gained control of
a steel furnace and this caused massive
damages to the plant.”

Source: Sources: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Lageberichte/Lagebericht2014.pdf?__blob=publicationFile;

http://www.resilienceoutcomes.com/state-ict-security/

35

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Connecting automotive systems to internet
opens system to attack thru changed
operational environment

Extending systems opens
vulnerabilities not anticipated
• Optimizations performed

assuming one attack method
• Assumptions no longer hold

with additional integrations

Source: http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

36

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Vulnerabilities emerge in existing code

Defects in functionality found early
and in new code

Vulnerabilities found in legacy code
and late (“honeymoon effect”)

New operating environments are a
major cause of vulnerabilities

Clark, Frei, Blaze, Smith, “Familiarity Breeds Contempt: The Honeymoon Effect and the Role of Legacy Code in Zero-Day
Vulnerabilities,” ACSAC ’10 Dec. 6-10, 2010, p. 251-260.”

Carefully weigh benefits (risk reduction) vs cost (time, space) of
implementing defense in depth.

37

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Staying current with software supply chain
issues
Government, industry and standards organizations are working together
to improve the software supply chain

• DHS’ CISA ICT Supply Chain Risk Management Task Force
• Dept of Commerce’s NTIA Software Component Transparency
• NIST Supply Chain Risk Management Practices for Federal

Information Systems and Organizations

And more is being
worked on
(Ron Ross, RMF 2.0 presentation, chart 20,
https://csrc.nist.gov/CSRC/media/Presentation
s/RMF-2-0-Risk-Management-Framework-
Simplify-Inno/images-media/sp800-37r2-ipd-
rollout-DOJ-20180509.pdf)

38

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Contact Information

Mark Sherman
Technical Director
Cyber Security Foundations
Telephone: +1 412-268-9223
Email: mssherman@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

mailto:info@sei.cmu.edu

39

© 2019 Carnegie Mellon University

[Distribution Statement A] This material has been
approved for public release and unlimited
distribution.

Further reading
Alberts, Christopher, et al., “Introduction to the Security Engineering Risk Analysis (SERA) Framework,” Software Engineering Institute, Nov 2014,
http://resources.sei.cmu.edu/asset_files/TechnicalNote/2014_004_001_427329.pdf

Alberts, Christopher, John Haller, Charles M. Wallen and Carol Woody, “Assessing DoD System Acquisition Supply Chain Risk Management,” CrosssTalk
- The Journal of Defense Software Engineering, May/June 2017, http://www.crosstalkonline.org/storage/issue-archives/2017/201705/201705-albert.pdf

Axelrod, C. Warren, “Mitigating Software Supply Chain Risk,” ISCA Journal Online, Vol 4., 2013, http://www.isaca.org/Journal/Past-Issues/2013/Volume-
4/Pages/JOnline-Mitigating-Software-Supply-Chain-Risk.aspx

Axelrod, C. Warren, “Malware, Weakware and the Security of Software Supply Chains,” Cross-Talk, March/April 2014, p. 20,
http://www.crosstalkonline.org/storage/issue-archives/2014/201403/201403-Axelrod.pdf

Ellison, Robert, et al, “Software Supply Chain Risk Management: From Products to Systems of Systems,” Software Engineering Institute, Dec 2010,
https://resources.sei.cmu.edu/asset_files/technicalnote/2010_004_001_15194.pdf

Ellison, Robert, et al. “Evaluating and Mitigating Software Supply Chain Security Risks,” Software Engineering Institute, May 2010,
http://resources.sei.cmu.edu/asset_files/technicalnote/2010_004_001_15176.pdf

Ellison, Robert and Woody, Carol, “Supply-Chain Risk Management: Incorporating Security into Software Development,” Proceedings of the 43rd Hawaii
International Conference on System Sciences, 2010, http://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_297341.pdf

Jarzombek, Joe, “Collaboratively Advancing Strategies to Mitigate Software Supply Chain Risks,” July 30, 2009,
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2009-07/ispab_july09-jarzombek_swa-supply-chain.pdf

Software Assurance Forum, Processes and Practices Working Group, “Software Assurance Checklist for Software Supply Chain Risk Management,”
https://buildsecurityin.us-cert.gov/sites/default/files/20101208-SwAChecklist.pdf

“Software Supply Chain Risk Management & Due-Diligence,” Software Assurance Pocket Guide Series: Acquisition & Outsourcing, Vol II, Version 1.2, June
16, 2009, https://buildsecurityin.us-cert.gov/sites/default/files/DueDiligenceMWV12_01AM090909.pdf

Third Party Software Security Working Group, “Appropriate Software Security Control Types for Third Party Service and Product Providers,” Financial
Services Information Sharing and Analysis Center, 2013,
http://docs.ismgcorp.com/files/external/WP_FSISAC_Third_Party_Software_Security_Working_Group.pdf

http://resources.sei.cmu.edu/asset_files/TechnicalNote/2014_004_001_427329.pdf
http://www.isaca.org/Journal/Past-Issues/2013/Volume-4/Pages/JOnline-Mitigating-Software-Supply-Chain-Risk.aspx
http://www.crosstalkonline.org/storage/issue-archives/2014/201403/201403-Axelrod.pdf
https://resources.sei.cmu.edu/asset_files/technicalnote/2010_004_001_15194.pdf
http://resources.sei.cmu.edu/asset_files/technicalnote/2010_004_001_15176.pdf
http://resources.sei.cmu.edu/asset_files/WhitePaper/2013_019_001_297341.pdf
http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2009-07/ispab_july09-jarzombek_swa-supply-chain.pdf
https://buildsecurityin.us-cert.gov/sites/default/files/20101208-SwAChecklist.pdf
https://buildsecurityin.us-cert.gov/sites/default/files/DueDiligenceMWV12_01AM090909.pdf
http://docs.ismgcorp.com/files/external/WP_FSISAC_Third_Party_Software_Security_Working_Group.pdf

	Growing Risks in the Software Supply Chain��
	Slide Number 2
	The SEI is a DoD R&D Federally Funded Research and Development Center
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Conventional view of supply chain risk
	Supply chains maintain product properties
	Value chains add value at each step
	Evolution of software development
	Development is now assembly
	Software supply (value) chain (tree) for assembled software
	Supply chain breadth: Assembly – Apache Example
	Supply chain depth: supply chain has a long path
	Large number of components in assembled software
	Cloning represents additional, hidden components in the supply chain
	Open source is not secure
	Open source is not secure
	Corruption in the tool chain already exists
	AI and Data Make Supply Chain Issues Worse
	Machine learning system face training data supply challenges
	Poor detection of deep fakes
	Reducing software supply chain risk factors
	Supplier capability: security commitment evidence
	Open source components could use a proxy process for supplier commitments
	Product security: Evaluate a product’s threat resistance
	Open source components could use a proxy process for product threat resistance
	Establish a Software Bill of Materials
	Avoid fragmentation: Versions of Android illustrate open source fragmentation
	Product distribution: Establishing good product distribution practices
	Corruption along the supply chain is easy
	Slide Number 32
	Maintain operational attack resistance
	Steel furnaces have been successfully attacked through changed operational assumptions
	Connecting automotive systems to internet opens system to attack thru changed operational environment
	Vulnerabilities emerge in existing code
	Staying current with software supply chain issues
	Contact Information
	Further reading

