
© Microsoft Corporation

Platform Security Summit

Jewell Seay

Principal Software Engineering Lead

Microsoft

2019/10/01

Azure Sphere: A Secure IoT Platform



© Microsoft Corporation

SECURITY IS FOUNDATIONAL

It must be built in from the beginning.



© Microsoft Corporation

Mirai Botnet attack

Everyday devices are used to launch an 
attack that takes down the internet for a day

https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/



© Microsoft Corporation

Hackers attack casino

Attackers gain access to casino database 
through fish tank

https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-
helped-hack-a-casino/



© Microsoft Corporation

OS Bug exposes 200M 
Devices

RTOS TCP Flaw

https://www.wired.com/story/vxworks-vulnerabilities-urgent11/



© Microsoft Corporation

Hardware Root of Trust

Defense in Depth

Small Trusted 

Computing Base

Dynamic Compartments

Certificate-Based 

Authentication

Error Reporting

Renewable Security

The 7 properties of highly secured devices
https://aka.ms/7properties

Unforgeable cryptographic keys generated and protected by hardware. Physical countermeasures resist 
side-channel attacks.

Private keys stored in a hardware-protected vault, inaccessible to software. Division of software into 
self-protecting layers.

Multiple mitigations applied against each threat. Countermeasures mitigate the consequences of a 
successful attack on any one vector.

Hardware-enforced barriers between software components prevent a breach in one from propagating 
to others.

Signed certificate, proven by unforgeable cryptographic key, proves the device identity and authenticity. 

Renewal brings the device forward to a secure state and revokes compromised assets for known 
vulnerabilities or security breaches.

A software failure, such as a buffer overrun induced by an attacker probing security, is reported to 
cloud-based failure analysis system.



Meeting these seven properties is difficult and costly

Design and build 

a holistic solution 

Recognize and mitigate 

emerging threats

Distribute and apply 

updates on a global scale 



Azure Sphere 

Certified MCUs 

The Azure Sphere 

OS 

The Azure Sphere 

Security Service 

Azure Sphere is an end-to-end solution for MCU powered devices



Cloud Services for immediate full device software updates

Core Services to support updates, cloud, and network communications

Linux Kernel to leverage the open source community’s security reviews and small 
footprint capabilities while leveraging existing platform code

Security Monitor for monitoring the security of the software platform

Azure Sphere MCUs for hardware-based security design

The Azure Sphere OS Architecture

User 
Applications

Core Services

Cloud Services

Linux Kernel

Security Monitor

Azure Sphere MCUs



Multiplexed I/O

SPII2CUARTI2SPWMGPIO ADC

ARM
Cortex-M

for real time 
processing

Azure Sphere Hardware Layout

C RO S S O V E R Cortex-A processing power
brought to MCUs for the first time

Hardware Firewall for full chip to chip communication control

Pluton our core of the chip security design

Onboard Wifi built-in for network connectivity

ARM Cortex-A for running the Security Monitor, Linux Kernel, 
and user applications

ARM Cortex-M for running a RTOS providing immediate IO 
access when demanded

FLASH for storage of all images and data on the system

SRAM to provide memory for executing applications

Network 
Connection
WiFi in first chips

FLASH 
≥ 4MB

SRAM
≥ 4MB

ARM 
Cortex-A
optimized for 

low power

Firewall

Microsoft
Pluton
Security 

Subsystem

Firewall

Firewall

Firewall

Firewall

Firewall



Multiplexed I/O

SPII2CUARTI2SPWMGPIO ADC

ARM
Cortex-M

for real time 
processing

Azure Sphere Hardware Firewall

Configurable firewalls support authenticated access to various 
peripherals and memory regions allowing protection of the 
memory map

Limited control to only security monitor for changing the 
configuration, locking down the regions on boot for RAM and 
key flash resources

Lock bits used to lock a configuration until SoC reset 
preventing an escalation of privilege from reconfiguring the 
firewalls

Network 
Connection
WiFi in first chips

FLASH 
≥ 4MB

SRAM
≥ 4MB

ARM 
Cortex-A
optimized for 

low power

Firewall

Microsoft
Pluton
Security 

Subsystem

Firewall

Firewall

Firewall

Firewall

Firewall



Defense in Depth: Pluton & Security Monitor

Dedicated M4 CPU for Hardware Root of Trust

Public/Private keys hardware generated when chip is set to a secure state 
during manufacturing

Private keys burned into e-fuses, only accessible by the hardware encryption 
module

Public Key securely transmitted to AS3

Encryption hardware only accessible by the Pluton subsystem

Flash writes can only be accomplished by Pluton

Pluton validates and boots Security Monitor

Security Monitor validates and boots the Linux Kernel

Application Signatures are verified by SM and Pluton before Linux Kernel loads 
an application

Hardware Security Chip

E-Fuses

ECC Private Keys

AES Key

AES

Pluton

Boot Key

SHA2

ECC

RSA

Secure World

RNG



Kernel.org is source of kernel code

4.9.x release branch with movement to newer LTS branches as stability is proven

Upstream releases are merged monthly

No module support to keep kernel binary size small and limit attack surface

No runtime code generation due to kernel size and memory impact

No sudo type functionality as no application needs to change user IDs

Custom LSM for process credentials

Disable page execution flag if the memory page was ever marked writable in the past

Linux Kernel

User 
Applications

Core Services

Cloud Services

Linux Kernel

Security Monitor

Azure Sphere MCUs



Linux Userland

No shell or console as there is no purpose

Leverage OSS Libraries like WolfSSL, cURL, and musl

Linux user isolation forcing each process to run as a separate user id 
including all core services

Custom init process that does not run as root, only root processes are 
kernel threads

Latest GCC compiler version used with default enablement of ASLR, stack 
protection, and non-executable stack

Network Firewall rules are application specific allowing control of IP and 
allowed domains to be compiled into the application manifest as part of 
the application package

Default deny of inbound and outbound network traffic

Application Isolation

Linux Kernel

Network Firewall

W^X Protection

ASLR

Heap

Protection

Stack Protection

Application

W^X Protection

ASLR

Heap

Protection

Stack Protection

Application



Attestation measured at the beginning of boot and modified by hashes of core 
components

Non-writeable register stores Attestation value, can only be updated by encryption 
hardware and requires a full SoC reset to start over.

AS3 Verification of the Attestation, combined with a nonce and signed with the device 
private key to confirm device identity and software. Device told to update if verification 
fails or old software detected.

AS3 TLS Authentication provided by a short lived (24h) certificate after attestation is 
confirmed allowing AS3 service access

Daily Check-in allows for rapid deployment of critical security concerns along with 
monthly full system updates

Cloud Services

User 
Applications

Core Services

Cloud Services

Linux Kernel

Security Monitor

Azure Sphere MCUs



Build System
Yocto build framework

Automated tests ran on each build including static code analysis and 
fuzzing

Functionality tests done with emulation and on actual hardware

All tests must pass to allow for Pull Request

Nightly CVE report for used open source components, 48 CVE 
patches so far in 2019 and 6 component version upgrades outside of 
Yocto release schedule

Linux SACK Panic pushed to the release pipeline within 2 days of 
kernel patches becoming public

Security flags validated on all Linux components, an extended version 
of Checksec

C++17 comprises the majority of internal code, complicating string, 
buffer, and array-based attacks. Very few objects inherit limiting 
object confusion and C++ provides automatic memory and object 
handling limiting heap attacks

Pull Request

Functionality Tests on Emulation

Static Code Analysis

Build Code

Optional Functionality Tests on Hardware

Nightly Builds

Functionality Tests on QEmu

Build Full System

Functionality Tests on Hardware

Nightly CVE validation code

Checksec validation


