
The Tragedy of the Commons
in Platform Security
John Loucaides
Platform Security Summit 2019

© 2019 Eclypsium

My Problem. Your Problem. Everyone's problem.

• How big is this industry again?
There must be conflicting goals.

• Do you know your dependencies?
There must be something changing about them.

• Can we keep up with all this and do our jobs?

© 2019 Eclypsium

Current State: Vulnerabilities, Advisories and Updates

[*] running module: chipsec.modules.common.bios_wp

[x][===

[x][Module: BIOS Region Write Protection

[x][===

[*] BC = 0x 288 << BIOS Control (b:d.f 00:31.5 + 0xDC)

[00] BIOSWE = 0 << BIOS Write Enable

[01] BLE = 0 << BIOS Lock Enable

[02] SRC = 2 << SPI Read Configuration

[04] TSS = 0 << Top Swap Status

[05] SMM_BWP = 0 << SMM BIOS Write Protection

[06] BBS = 0 << Boot BIOS Strap

[07] BILD = 1 << BIOS Interface Lock Down

[-] BIOS region write protection is disabled!

[*] BIOS Region: Base = 0x00340000, Limit = 0x007FFFFF

SPI Protected Ranges

--

PRx (offset) | Value | Base | Limit | WP? | RP?

--

PR0 (84) | 83EF03B0 | 003B0000 | 003EFFFF | 1 | 0

PR1 (88) | 862F03F0 | 003F0000 | 0062FFFF | 1 | 0

PR2 (8C) | 866F0630 | 00630000 | 0066FFFF | 1 | 0

PR3 (90) | 87EF06F0 | 006F0000 | 007EFFFF | 1 | 0

PR4 (94) | 87FF07F0 | 007F0000 | 007FFFFF | 1 | 0

[!] SPI protected ranges write-protect parts of BIOS region (other parts of BIOS can be

modified)

[!] BIOS should enable all available SMM based write protection mechanisms or configure SPI

protected ranges to protect the entire BIOS region

[-] FAILED: BIOS is NOT protected completely

© 2019 Eclypsium

Current State: Bypassing Security with Drivers

https://github.com/eclypsium/Screwed-Drivers

Signed driver allows direct access to arbitrary

hardware/firmware:

• Arbitrary ring 0 memcpy

• Arbitrary physical memory write

• Physical address lookup from virtual address

• Arbitrary MSR read/write

• Arbitrary CR read/write

• Arbitrary IO Port read/write

• Arbitrary PCI config read/write

Can either be already on system or carried with malware

https://github.com/eclypsium/Screwed-Drivers

© 2019 Eclypsium

New Approach: Disproportionally help defenders

Working Together

• Enable additive security—“plugins” to enforce policies

• Enable integrity checks—“plugins” to observe/measure

• Enable trusted sources—how do we know what is “official”?

Focus Areas

• Identification

• Configuration

DevOps/DevSecOps

• Real-time, automated checks

• Update deployment rings

• Quick test & response

© 2019 Eclypsium

Maybe We’re on the Right Track...

Open Communities & Sharing

• Code (Tianocore, Coreboot, etc)

• Measurements & Updates (LVFS)

• Security Advisories

• Testing (CHIPSEC, HBFA, etc)

Next? Making it easier...

• Published Measurements
• Hashes

• Behaviors

• Status / config

• Integrity Interfaces
• Read the measurements

• Policy plugins

Thank you!

