
Hypervisor Security : Lessons Learned
Evolving hypervisor design in the quest for better security

Ian Pratt

Bromium



2© Bromium 2018

▪ 2001 Xen / XenServer

▪ 2008 XenClient / OpenXT

▪ 2011 hXen / µXen / Type-1.5

▪ 2016 AX

Hypervisor Genealogy 



3© Bromium 2018

▪ Developed to support XenoServers project

▪ Run arbitrary apps for fee on shared infrastructure – VMs enable containerization 

▪ Requirements

▪ Robust spatial and temporal isolation of VMs

▪ Design

▪ Avoid complex and slow binary emulation or translation (no VT-x/AMDV)

▪ Port kernel to a paravirtual API supported by hypervisor (Linux, XP/2003, *BSD)

▪ Use x86 segmentation to protect hypervisor from guest

▪ Problem when x64 appeared without segment limits in 2003/4

▪ Necessary to use pagetable switching, tricks to preserve TLB entries

Xen and the Art of Virtualization



4© Bromium 2018

▪ VT-x / AMDV arrived in 2005/6, Xen was ready with support

▪ VM entry/exit initially very slow, started getting quite good in 2008

▪ Avoid enter/exit roundtrips by looking ahead in instruction stream

▪ Scary complex x86 emulation

▪ Shadow pagetables required to handle composite memory translation until EPT/NPT in 2008

▪ Required considerably complexity to make perform well

▪ Performed better than EPT/NPT until 2009

▪ By 2009 it was clear that using virtualization extensions was just better in every way, especially 
in reducing hypervisor complexity and hence improving security

▪ Having a large deployed base of legacy VMs on legacy hardware makes it hard to move forward

▪ 10 years later still not dead

Xen and Virtualization Extensions



5© Bromium 2018

▪ Opportunity to create a showcase for how Xen should be configured for security

▪ Guest VMs use VT-x/AMDV  

▪ Dissagregation

▪ Qemu stub domains

▪ Restartable driver domains e.g. for network/WiFi ; USB Storage

▪ Service VMs e.g. VPN VMs 

▪ Mandatory Access Control : SELinux dom0, XSM

▪ Required PCI passthrough for driver domains, GPU etc using VT-d/IOMMU

▪ Worrying complexity; Need to really understand device BARs, config space etc

▪ DRoT with TXT, enable attestation, use sealed storage for encryption keys

▪ Challenges making TXT work on vendor platforms, very limited STM BIOS availability

XenClient



6© Bromium 2018

▪ Create a VM for every user-centric task

▪ Every web page, every document, every email etc

▪ Support many concurrent VMs on laptop/desktop hardware

▪ VM cloning, Copy-on-Write memory

▪ Transparent to the end user

▪ Create clone VMs in tens of milliseconds

▪ Great interactive performance, battery life

▪ Support multi touch screens and trackpads etc

▪ Cross platform: Windows, MacOS, Linux/Android

▪ Must provide very robust spatial isolation

▪ Introspection into VMs for forensic purposes

Bromium vSentry Requirements



7© Bromium 2018



8© Bromium 2018

▪ Package hypervisor as a platform independent module that can be loaded by Host kernel

▪ Set of in/out interfaces linked at module load time

▪ Host thread calls in to uXen module to run VCPU

▪ Return when need IO assistance, or when pre-emption possible

▪ Call out from module to host kernel for memory allocation, cross-CPU synchronization

▪ Use host OS scheduler

µXen



9© Bromium 2018

▪ Require VT-x/AMDV, EPT/NPT

▪ No legacy hardware support

▪ No legacy guest support (guest automatically recreated)

▪ PV device interfaces all built on simple hypervisor copy-based primitive

▪ No memory sharing (grant tables); copying 

▪ No xenstore, though still allow device reconnection

▪ Simple, narrow interfaces

▪ Emulated devices irrevocably disabled post-boot (prior to exposure to anything untrusted)

▪ Simple Viridian synthetic devices for LAPIC, timers

▪ Only very simple instruction decoder required

▪ Only 3 of the many potential guest escape XSA’s have ever been relevant to uXen

µXen Architecture 



10© Bromium 2018

▪ Collect threat intelligence by monitoring guest execution

▪ Black box flight recorder trace of execution, held in host to prevent tamper by guest

▪ Introspection of key data structures, network, storage; plus guest instrumentation

▪ Since application is known, look for divergence from expected behavior

▪ State machine generates trigger when something interesting happens 

▪ Most users just allow execution to continue and collect full kill chain

▪ Nothing to steal; no way to move laterally; no way to persist 

▪ Attacker thinks they have succeeded 

▪ Preserve flight recorder trace, and stream to collection server for analysis

µXen VM Monitoring



11© Bromium 2018

▪ Installed on a lot of systems, HP Sure Click

▪ Billions of VMs created

▪ Internal and external review

▪ Code auditing

▪ Grey box pen testing

▪ Bug bounties

▪ Fuzzing, fault injection on hypervisor entry path

▪ Exploit mitigation techniques e.g. separate heap for any user-controlled data

▪ Never memory map more than you need

▪ Use all the help from the compiler and tools you can get

µXen Experience



13© Bromium 2018

▪ Design goal: Allow some VMs that are more trusted than the host, Protected VMs (pVMs)

▪ Protected from the host from a Confidentiality and Integrity point of view

▪ Use pVMs for running high-value applications and their OS

▪ Not just small sensitive parts of applications as per SGX 

▪ Runtime de-privileging of the running host into a VM

▪ Establish DRoT with TXT

▪ Create Host VMCS and EPT/VT-d tables to allow access to all resources except those used by 
hypervisor module and pVMs

▪ pVMs use host for IO, should ensure encrypted and authenticated (VPN, dm-verity etc)

▪ Measure and attest to initial state of each pVM

▪ Able to kill pVMs, scrub memory, re-privilege the host

uXen “Type-1.5” Extensions



14© Bromium 2018

Host CPU De-privilege

© Bromium 2014

uxen.sys
kernel

user
Host OS

VMCS #0

ring0

ring3

uxen core

uxen.sys

kernel

user
Host OS

ring0

ring3

uxen core

Hardware

Root

Virtual

De-Privilege

root-ring0



15© Bromium 2018

uxen.sys

kernel

user
VM0 Host 

OS

VMCS #0

huxendm.exe

uxen coreRoot

Virtual

VM1

VM2uxendm.exe
pVM1 pVM2

VMCS #1 VMCS #2

ring0

ring3

ring0

1

2 3
4

6 5
VMENTERVMEXIT

IOCTL

VMCALL Return

Return

7

8

9

Execution Model



16© Bromium 2018

▪ Build on ideas from uXen-T1.5

▪ Protected VMs concepts important in Client and Cloud

▪ Reduce trust in Cloud Providers

▪ Run high-value applications on hosts of unknown state (e.g. BYOD)

▪ Focus on minimal TCB

▪ SRoT and DRoT

▪ Embrace nested virtualization

▪ Common in Cloud; Client Hyper-v

AX Design Goals



17© Bromium 2018

▪ UEFI module, de-privilege running system ahead of host OS

▪ Can load from system disk or package as DXE/PEI firmware module

▪ Minimal TCB, just a few KLOC of guest-facing code

▪ Implement minimum for spatial isolation of resources, Confidentiality and Integrity

▪ Scheduling is outside TCB – can use trusted RTOS  / SE Linux if you care
▪ Hierarchical subdivision of resources

▪ Enforce resource Subset rules, Enforce Exclusion rules for Protected VMs

▪ Enables arbitrary nesting of VMs, even if nested hypervisors don’t support nesting

▪ Enables uXen to run on top of Win10 hyper-v even though hyper-v doesn’t support 
nesting

▪ System performance excellent on modern hardware

AX Architecture



18© Bromium 2018

Win10 VBS virtualization stack with AX
18

L1 VM

L0 Bare metal AX

Hyper-v

L2 VM

Win10 Host running uXen

L2 VM

VBS VM

L3 VM L3 VM L3 VM

Win uVM Win uVM pVM



19© Bromium 2018

▪ AX ensures nested VMs are contained and can not exceed the resources of their parent VMs or 
impact their privacy or integrity

▪ Thus VBS CG/DG isolation design goals are maintained

▪ Enhanced through additional introspection of hyper-v

▪ When Protected VMs are created, enforcement of spatial protection is made symmetric 

▪ Confidentiality and integrity of the child VM is ensured from the parent as well as vice versa

▪ Ensure EPT/VT-d memory regions of VMs are disjoint

▪ Remove pages referenced in child VM’s EPT from all parent VMs’ EPT

▪ When child VM terminates scrub and return pages

▪ Use AMD Secure Encrypted Virtualization (SEV-ES) features for additional protection

▪ Keep child VM register state and VMCS/VMCB state in AX, parent VM sees and manipulates 
shadow state only

AX Isolation Enforcement

19



20© Bromium 2018

▪ Outer hypervisor can not see pVM’s registers or memory state

▪ Hence traditional instruction emulation or virtual DMA not possible

▪ Use proven uXen communication primitive, guest drivers and backends

▪ Use specially configured Linux kernel to use PV drivers, LAPIC, timers

▪ For Windows use reflective injection of IO/MMIO events back into an instruction 
emulator running in the context of the pVM that will then use the existing PV interface

▪ Allows register and memory access since in context of pVM

▪ De-privileges complex emulation code keeping AX small and simple

▪ Fits with AMD SEV-ES

Protected VM IO/MMIO/DMA operations

20



21© Bromium 2018

▪ Confidentiality and integrity provided within pVM, but data passes through host/drivers

▪ Net : Use TLS/IPSec connections terminated in pVM

▪ Block : Use Authenticated Encryption / Merkle hash trees for integrity

▪ Take ownership of device in a Service VM, virtualize to other VMs

▪ Keyboard : Route input to the currently focussed pVM thus preventing snooping or injection

▪ Easier with laptop keyboards (PS2), harder with USB – use “shadow URBs” to parse traffic 
and extract HID events

▪ Enables restartable driver domain model as per XenClient

▪ Secure video path immune to screen scraping or injection remains challenging if host OS is 
allowed to use GPU

▪ Not all use cases require secure video path

▪ Use s/w rendering; GPU stealing; or separate GPUs 

▪ Ongoing work with h/w vendors to support safe sharing or secure overlays

Protected VM Input/Output paths

21



22© Bromium 2018

▪ Populate memory image of S3 suspended VM (no device or CPU state), measure on launch

▪ Only launch PKI signed pVMs with a certificate chain that can be validated against a list of CA 
certs to prevent abuse

▪ Allow pVM to get TPM quotes of boot state and VM launch state, attest to 3rd parties

▪ Use vTPM or moderated pass-through of hardware TPM

▪ Currently, destroy protected VMs on host S3/S4 sleep

▪ Future option to allow save/restore of VMs using authenticated encryption 

Measurement and Attestation

22



23© Bromium 2018

▪ Easy to get broad platform support for a client hypervisor
▪ Tested on all HP Systems

▪ Exploit mitigation techniques have proved useful
▪ AX contains no indirect branches – proved helpful with Spectre

▪ Absolute branches due to CFG; Extreme ASLR

▪ Introspection capabilities have proved very helpful
▪ Monitoring integrity of Hyper-v, Windows 

▪ Scales well to very large systems, down to small IoT systems
▪ Very useful security properties for IoT, Client and Cloud

▪ Architecture has a huge influence on Security. Keep it Simple and Small. 

AX Experience


