
© 2018 WIND RIVER. ALL RIGHTS RESERVED.

The meta-virtualization
layer of OpenEmbedded

Bruce Ashfield
Principal Technologist
Linux Products Group

2© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Agenda

 Introduction

 Brief OpenEmbedded introduction / history

 How Wind River uses OE

 meta-virtualization

 OE + meta-virtualization + security

 Future / Questions

3© 2018 WIND RIVER. ALL RIGHTS RESERVED.

A Brief Introduction …

© 2018 WIND RIVER. ALL RIGHTS RESERVED.

4© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Enterprise vs Embedded

 The world is not limited to enterprise vs embedded
 It’s really more a continuum, from the pre-defined to the fully customized

 Many users have requirements that are between those of the Enterprise
Linux and Embedded Linux
 Some enterprise like systems are source based
 Some embedded like systems are based on preconfigured binaries

 One size does not fit all in the Linux ecosystem

5© 2018 WIND RIVER. ALL RIGHTS RESERVED.

OpenEmbedded

 OpenEmbedded
 Includes a cross-compile build environment
 User is required to configure and define their environment before compiling
 Created a custom binary Linux distribution based on configuration
 Output includes ‘packages’, like an enterprise OS, filesystem images, SDKs

 All software is downloaded from the original provider as source code

 Designed to be expanded/extended

 Commercial and Community support

6© 2018 WIND RIVER. ALL RIGHTS RESERVED.

The Yocto Project

© 2018 WIND RIVER. ALL RIGHTS RESERVED.

The smallest unit of measure,

equal to one septillionth (10-24).

[yoc-to]

7© 2018 WIND RIVER. ALL RIGHTS RESERVED.

What is the Yocto Project?

 The Yocto Project is an Open Source project with a strong community

 It is based on a collection of embedded projects, tooling, and procedures
 OpenEmbedded
 Application Development
 Quality Assurance testing
 Commercial Ecosystem

 The Yocto Project is designed to provided an ecosystem to the Operating
System developer.

It’s not an embedded Linux distributon –
it helps you creates the custom one for you

8© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Who is the Yocto Project

 Founded under the Linux Foundation

 Members include numerous companies and projects spanning Silicon
vendors, Board vendors, OSVs, ISVs, and end users

 Lead by Advisory Board and Technical Leadership

 Advisory board is responsible for ecosystem, marketing, etc.

 Technical Leadership is a meritocracy based group that leads various
projects and makes technical contributions

9© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Why was the Yocto Project started?

 The industry needed a common build system and core technology
 Bitbake and OpenEmbedded build system

 A place for Commercial Interests to work together to avoid duplicating
effort
 Why should each company have a competing build system?
 Why is each organization integrating the same components in different ways?
 Why are we all duplicating effort, duplicating bugs, and duplicating solutions?

 Less time spent on things which don’t add value

 More time spent on things which do add value

10© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Comparisons …

© 2018 WIND RIVER. ALL RIGHTS RESERVED.

11© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Embedded Linux Requirements

 Goal:
 Build upon the existing Linux ecosystem and goals
 Build a complete, customized, Linux system for a specific device
 Include Bootloaders, Linux Kernel, Root Filesystems

 Build from scratch from source
 Reproducibility, IP compliance reasons, customization

 Use cross-compilation to build software
 Often developer/build machine will be faster or more plentiful then target

hardware

 Need a vibrant community
 Documentation, support, training

12© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Alternatives / Options

 OE / Yocto project

 Enterprise Linux
 IoT variants

 Buildroot

 Roll-your-own

13© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Enterprise Linux

 Easy entry level

 Often used for prototyping

 Customization or Support – not both

 Maintenance

 IoT focused systems
 Project Atomic
 Ubuntu Core

 Not cross-compiled

 Not source code based

14© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Buildroot

 Allows simple entry into Embedded Linux

 Limited built in extension points

 No binary packages

 Most users end up having to create their own forks

15© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Roll-your-own

 Enterprise based

 Silicon Vendor/Board Vendor SDK

 Completely custom

16© 2018 WIND RIVER. ALL RIGHTS RESERVED.

With the alternatives, why OpenEmbedded ?

 OE may not be right for all situations!

 PC like usage model? enterprise Linux or variants

 One-time use board bring up? OE might be too complex

 Foot-print, long-term maintenance, commercial ecosystem, IP, etc
concerns?
 OE/Yocto Project is probably what you want

17© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Layers and the Ecosystem…

© 2018 WIND RIVER. ALL RIGHTS RESERVED.

18© 2018 WIND RIVER. ALL RIGHTS RESERVED.

 Layers are a way to manage extensions, and customizations to the
system
 Layers can extend, add, replace or modify recipes
 Layers can add or replace bbclass files
 Layers can add or modify configuration settings
 Layers are added via BBLAYERS variable in build/conf/bblayers.conf

 Best Practice: Layers should be grouped by functionality
 Distribution configurations
 BSP/Machine
 Functional groups
 Project/Product specific components

Layers

© 2014 LINUX FOUNDATION. ALL RIGHTS RESERVED.

19© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Layers

LEGO is a trademark of the LEGO Group

20© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Layers

© 2014 LINUX FOUNDATION. ALL RIGHTS RESERVED.

21© 2018 WIND RIVER. ALL RIGHTS RESERVED.

 The ecosystem is formed by the collection of layers and projects
 Broad and active
 Content of layers is a work in progress

 Various levels of maintenance and ‘quality’
 Yocto project compatibility and layer index
 Tools to support layers and recipe creation/maintenance

 If you have layers: test for compatibility and publish!

Ecosystem

© 2014 LINUX FOUNDATION. ALL RIGHTS RESERVED.

22© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Build System Workflow

© 2018 YOCTO PROJECT

23© 2018 WIND RIVER. ALL RIGHTS RESERVED.

How (and why) is Wind River using
the Yocto Project?

© 2018 WIND RIVER. ALL RIGHTS RESERVED.

24© 2018 WIND RIVER. ALL RIGHTS RESERVED.

What about commercial Linux?

 Prior to the Yocto Project, there were many commercial Linux products
 Each was incompatible with the others, even if they shared a common core

 In many ways each commercial vendor had created their own ‘Roll-your-
own’ system and tried to share the costs among their customers

 This lead to many limited ecosystems:
 Limited ISV support
 Limited semiconductor support
 Limited BSP support

 Vendor lock-in was a problem for customers

25© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Innovation / Differentiation

 Linux is now a commodity operating system

 Nobody is going to buy a new kernel

 People will pay for service, new development, features, etc.

26© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Software Lifecycle Management

 Open source software lifecycle is short
 New versions are released constantly, but not on any fixed cycle
 Days, weeks, months or years
 Old versions are often abandoned as soon as new versions are released

 Commercial product lifecycles vary
 Developed in 6 months, only sold for 6 months
 Developed for 6 months and sold for years…
 Developed over years and sold for years…

 It is Wind River’s job to help the customer manage the commercial
lifecycle vs the fast changing open source lifecycles

27© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Software Integration

 Roll-your-own or the Yocto Project?

 It’s easy to do something once…

 It’s not to bad to do it twice…

 But supporting something for a long time takes process, planning and
expertise

 Carrying costs, including maintenance, updates, etc add up quickly!

 Continuous Integration of the Yocto Project

28© 2018 WIND RIVER. ALL RIGHTS RESERVED.

What that looks like …

 Core product
 Closely based on OE core
 Selected / curated layers
 github / community editions
 CI/CD stream

 WR BSPs

 Vertical specific ‘products’ (distros)
 WR core + additional layers and configuration
 Networking, industrial
 Technology horizontals: virtualization /containers, security ..

29© 2018 WIND RIVER. ALL RIGHTS RESERVED.

meta-virtualization

© 2018 WIND RIVER. ALL RIGHTS RESERVED.

30© 2018 WIND RIVER. ALL RIGHTS RESERVED.

meta-virtualization overview

 From openhub:
 has had 773 commits made by 104 contributors
 with a very well-commented source code
 has a well established, mature codebase
 maintained by a very large development team
 starting with its first commit in June, 2012

 Current maintainer(s): Bruce Ashfield (Wind River)

 Contributors: OSVs (Wind River, Mentor, Monta Vista, Enea, ...), distros,
individual users

31© 2018 WIND RIVER. ALL RIGHTS RESERVED.

meta-virtualization goals

 Goals:
 Single point of integration for virtualization technologies

 VMs and containers
 Core technology + support software
 Many audiences: Bleeding edge and established tech
 Well tested and stable
 Baseline for creating OE derived virtualization solutions

 Recipes migrate over time

32© 2018 WIND RIVER. ALL RIGHTS RESERVED.

meta-virtualization components

 Technology
 virtualization: guests/hosts, containers, management, utilities / support, configuration(s):

images, kernel

 ~98 recipes (some are variants)
 recipes-containers: Kubernetes, runc, docker/moby, OCI, LXC, containerd
 recipes-core: system init, runv
 recipes-devtools: support recipes for core/containers
 recipes-extended: libvirt, hyperstart, kvmtool, image definitions, dev86 ..
 recipes-kernel: configuration fragments to support VMs/Container features
 recipes-networking: CNI, OpenVSwitch, netns

33© 2018 WIND RIVER. ALL RIGHTS RESERVED.

meta-virtualization use cases

 Virtualization: Xen / KVM
 Small, secure, etc

 Containers: docker, LXC, runc, moby
 Lightweight, micro-services, serverless, etc
 Standards based: OCI

 VMs and container co-existence
 Single image, nested, runv …

 Management and control
 CLI: libvirt
 Orchestration: kubernetes, CNI, etc

34© 2018 WIND RIVER. ALL RIGHTS RESERVED.

How Wind River uses meta-virtualization

 Core hypervisor support
 realtime + security variants

 Containers
 Core container support: docker, lxc, runc
 Container OS: OverC

35© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Secure boot + meta-virt @ Wind
River …

© 2018 WIND RIVER. ALL RIGHTS RESERVED.

36© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Secure boot requirements

 As little as possible is BSP specific
 leverage hardware when possible
 Avoid one-offs

 Multiple layers of security

 key management

 Multi-architecture

37© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Wind River Linux
Yocto Project x.y

Wind River Linux
Security Carrier Grade

Security
Virtualizatio

Security technology
 Security policy

 SE Linux MLS/MCS
 Login and remote access

 Access controls

 Memory protection

 PKI

 Secure & measured boot

 Linux IMA

 TPM 1.2 and TrouSerS

 TPM 2.0 and TPM2-TSS

 SCAP (OpenSCAP)

 FIPS OpenSSL

 Remote attestation

 File system integrity
monitoring

 Backup/restore

Virtualization technology
 Least privilege/privilege controls

 Access controls

 Resource utilization protection

 Memory protection

VTx/VTd
PTT

UEFI, TXT

AES-NI,
QAT

38© 2018 WIND RIVER. ALL RIGHTS RESERVED.

Wind River Linux Wind River Linux

Opeo
Virtualizatio

Opeo
Virtualizatio

Carrier GradeCarrier Grade SecuritySecurity

OverC / WRL Security Reference Image

 Wind River Linux secure
kernel

 Secure Boot

 Linux IMA

 Secure backup/restore

 SELinux

 TPM 2.0 and TPM2-TSS

 IPsec/L2TP/PPTP VPN

 Storage encryption

 Secure update

 OpenSCAP configuration
guidance

AES-NI,
QAT

PTT

UEFI,
TXT

39© 2018 WIND RIVER. ALL RIGHTS RESERVED.

What’s next ?…

© 2018 WIND RIVER. ALL RIGHTS RESERVED.

40© 2018 WIND RIVER. ALL RIGHTS RESERVED.

What the future may hold …

 New technology in meta-virtualizion

 Hypervisors (ACRN ...)

 container / sandbox techniques (gvisor? pouch? kata containers)

 Improved system level use cases / tests, not just buckets of packages
 security 'toolkit' / core components
 See Richard Purdie's 2.6 planning email

 Update mechanisms (OTA or not), reference binary feeds

 Developer experience

 More … we need help!

41© 2018 WIND RIVER. ALL RIGHTS RESERVED.

™

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

